59 research outputs found

    Affect Lexicon Induction For the Github Subculture Using Distributed Word Representations

    Get PDF
    Sentiments and emotions play essential roles in small group interactions, especially in self-organized collaborative groups. Many people view sentiments as universal constructs; however, cultural differences exist in some aspects of sentiments. Understanding the features of sentiment space in small group cultures provides essential insights into the dynamics of self-organized collaborations. However, due to the limit of carefully human annotated data, it is hard to describe sentimental divergences across cultures. In this thesis, we present a new approach to inspect cultural differences on the level of sentiments and compare subculture with the general social environment. We use Github, a collaborative software development network, as an example of self-organized subculture. First, we train word embeddings on large corpora and do embedding alignment using linear transformation method. Then we model finer-grained human sentiment in the Evaluation- Potency-Activity (EPA) space and extend subculture EPA lexicon with two-dense-layered neural networks. Finally, we apply Long Short-Term Memory (LSTM) network to analyze the identities’ sentiments triggered by event-based sentences. We evaluate the predicted EPA lexicon for Github community using a recently collected dataset, and the result proves our approach could capture subtle changes in affective dimensions. Moreover, our induced sentiment lexicon shows individuals from two environments have different understandings to sentiment-related words and phrases but agree on nouns and adjectives. The sentiment features of “Github culture” could explain that people in self-organized groups tend to reduce personal sentiment to improve group collaboration

    Fuzzy Sparse Autoencoder Framework for Single Image Per Person Face Recognition

    Get PDF
    The issue of single sample per person (SSPP) face recognition has attracted more and more attention in recent years. Patch/local-based algorithm is one of the most popular categories to address the issue, as patch/local features are robust to face image variations. However, the global discriminative information is ignored in patch/local-based algorithm, which is crucial to recognize the nondiscriminative region of face images. To make the best of the advantage of both local information and global information, a novel two-layer local-to-global feature learning framework is proposed to address SSPP face recognition. In the first layer, the objective-oriented local features are learned by a patch-based fuzzy rough set feature selection strategy. The obtained local features are not only robust to the image variations, but also usable to preserve the discrimination ability of original patches. Global structural information is extracted from local features by a sparse autoencoder in the second layer, which reduces the negative effect of nondiscriminative regions. Besides, the proposed framework is a shallow network, which avoids the over-fitting caused by using multilayer network to address SSPP problem. The experimental results have shown that the proposed local-to-global feature learning framework can achieve superior performance than other state-of-the-art feature learning algorithms for SSPP face recognition

    Fuzzy superpixels for polarimetric SAR images classification

    Get PDF
    Superpixels technique has drawn much attention in computer vision applications. Each superpixels algorithm has its own advantages. Selecting a more appropriate superpixels algorithm for a specific application can improve the performance of the application. In the last few years, superpixels are widely used in polarimetric synthetic aperture radar (PolSAR) image classification. However, no superpixel algorithm is especially designed for image classification. It is believed that both mixed superpixels and pure superpixels exist in an image.Nevertheless, mixed superpixels have negative effects on classification accuracy. Thus, it is necessary to generate superpixels containing as few mixed superpixels as possible for image classification. In this paper, first, a novel superpixels concept, named fuzzy superpixels, is proposed for reducing the generation of mixed superpixels.In fuzzy superpixels ,not al lpixels are assigned to a corresponding superpixel. We would rather ignore the pixels than assigning them to improper superpixels. Second,a new algorithm, named FuzzyS(FS),is proposed to generate fuzzy superpixels for PolSAR image classification. Three PolSAR images are used to verify the effect of the proposed FS algorithm. Experimental results demonstrate the superiority of the proposed FS algorithm over several state-of-the-art superpixels algorithms

    Adaptive Fuzzy Learning Superpixel Representation for PolSAR Image Classification

    Get PDF
    The increasing applications of polarimetric synthetic aperture radar (PolSAR) image classification demand for effective superpixels’ algorithms. Fuzzy superpixels’ algorithms reduce the misclassification rate by dividing pixels into superpixels, which are groups of pixels of homogenous appearance and undetermined pixels. However, two key issues remain to be addressed in designing a fuzzy superpixel algorithm for PolSAR image classification. First, the polarimetric scattering information, which is unique in PolSAR images, is not effectively used. Such information can be utilized to generate superpixels more suitable for PolSAR images. Second, the ratio of undetermined pixels is fixed for each image in the existing techniques, ignoring the fact that the difficulty of classifying different objects varies in an image. To address these two issues, we propose a polarimetric scattering information-based adaptive fuzzy superpixel (AFS) algorithm for PolSAR images classification. In AFS, the correlation between pixels’ polarimetric scattering information, for the first time, is considered through fuzzy rough set theory to generate superpixels. This correlation is further used to dynamically and adaptively update the ratio of undetermined pixels. AFS is evaluated extensively against different evaluation metrics and compared with the state-of-the-art superpixels’ algorithms on three PolSAR images. The experimental results demonstrate the superiority of AFS on PolSAR image classification problems

    Effect of Restricted Grazing Time on the Foraging Behavior and Movement of Tan Sheep Grazed on Desert Steppe

    Get PDF
    To investigate the effect of restricted grazing time on behavior of Tan sheep on desert steppe, forty 4-months old male Tan sheep with an original body weight (BW) of 15.62±0.33 kg were randomly allocated to 4 grazing groups which corresponded to 4 different restricted grazing time treatments of 2 h/d (G2), 4 h/d (G4), 8 h/d (G8) and 12 h/d (G12) access to pasture. The restricted grazing times had a significant impact on intake time, resting time, ruminating time, bite rate and movement. As the grazing time decreased, the proportion of time spent on intake, bite rate and grazing velocity significantly (p<0.05) increased, but resting and ruminating time clearly (p<0.05) decreased. The grazing months mainly depicted effect on intake time and grazing velocity. In conclusion, by varying their foraging behavior, Tan sheep could improve grazing efficiency to adapt well to the time-limited grazing circumstance

    The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance

    Get PDF
    In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.</p
    corecore