12,715 research outputs found
Recommended from our members
Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model
In this study, a new cooling strategy for a proton exchange membrane (PEM) fuel cell stack is investigated using a three-dimensional (3D) multiphase non-isothermal model. The new cooling strategy follows that of the Honda's Clarity design and further extends to a cooling unit every five cells in stacks. The stack consists of 5 fuel cells sharing the inlet and outlet manifolds for reactant gas flows. Each cell has 7-path serpentine flow fields with a counter-flow configuration arranged for hydrogen and air streams. The coolant flow fields are set at the two sides of the stack and are simplified as the convective heat transfer thermal boundary conditions. This study also compares two thermal boundary conditions, namely limited and infinite coolant flow rates, and their impacts on the distributions of oxygen, liquid water, current density and membrane hydration. The difference of local temperature between these two cooling conditions is as much as 6.9 K in the 5-cell stack, while it is only 1.7 K in a single cell. In addition, the increased vapor concentration at high temperature (and hence water saturation pressure) dilutes the oxygen content in the air flow, reducing local oxygen concentration. The higher temperature in the stack also causes low membrane hydration, and consequently poor cell performance and non-uniform current density distribution, as disclosed by the simulation. The work indicates the new cooling strategy can be optimized by increasing the heat transfer coefficient between the stack and coolant to mitigate local overheating and cell performance reduction
Non-Universality of Density and Disorder in Jammed Sphere Packings
We show for the first time that collectively jammed disordered packings of
three-dimensional monodisperse frictionless hard spheres can be produced and
tuned using a novel numerical protocol with packing density as low as
0.6. This is well below the value of 0.64 associated with the maximally random
jammed state and entirely unrelated to the ill-defined ``random loose packing''
state density. Specifically, collectively jammed packings are generated with a
very narrow distribution centered at any density over a wide density
range with variable disorder. Our results
support the view that there is no universal jamming point that is
distinguishable based on the packing density and frequency of occurence. Our
jammed packings are mapped onto a density-order-metric plane, which provides a
broader characterization of packings than density alone. Other packing
characteristics, such as the pair correlation function, average contact number
and fraction of rattlers are quantified and discussed.Comment: 19 pages, 4 figure
Universal Estimation of Directed Information
Four estimators of the directed information rate between a pair of jointly
stationary ergodic finite-alphabet processes are proposed, based on universal
probability assignments. The first one is a Shannon--McMillan--Breiman type
estimator, similar to those used by Verd\'u (2005) and Cai, Kulkarni, and
Verd\'u (2006) for estimation of other information measures. We show the almost
sure and convergence properties of the estimator for any underlying
universal probability assignment. The other three estimators map universal
probability assignments to different functionals, each exhibiting relative
merits such as smoothness, nonnegativity, and boundedness. We establish the
consistency of these estimators in almost sure and senses, and derive
near-optimal rates of convergence in the minimax sense under mild conditions.
These estimators carry over directly to estimating other information measures
of stationary ergodic finite-alphabet processes, such as entropy rate and
mutual information rate, with near-optimal performance and provide alternatives
to classical approaches in the existing literature. Guided by these theoretical
results, the proposed estimators are implemented using the context-tree
weighting algorithm as the universal probability assignment. Experiments on
synthetic and real data are presented, demonstrating the potential of the
proposed schemes in practice and the utility of directed information estimation
in detecting and measuring causal influence and delay.Comment: 23 pages, 10 figures, to appear in IEEE Transactions on Information
Theor
Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a semi-permeable layer with storage
Analytical studies are carried out to investigate groundwater-head changes in a coastal aquifer system in response to tidal fluctuations. The system consists of an unconfined aquifer, a semi-confined aquifer and a semi-permeable confining unit between them. An exact analytical solution is derived to investigate the influences of both leakage and storage of the semi-permeable layer on the tide-induced groundwater-head fluctuation in the semi-confined aquifer. This solution is a generalization of the solution obtained by Jiao and Tang (Water Resource Research 35 (1999) 747-751) which ignored the storage of the semi-confining unit. The analytical solution indicates that both storage and leakage of the semi-permeable layer play an important role in the groundwater-head fluctuation in the confined aquifer. While leakage is generally more important than storage, the impact of storage on groundwater-head fluctuations changes with leakage. With the increase of leakage the fluctuation of groundwater-head in the confined aquifer will be controlled mainly by leakage. The study also demonstrates that the influence of storativity of the semi-permeable layer on groundwater-head fluctuation is negligible only when the storativity of the semi-permeable layer is comparable to or smaller than that of the confined aquifer. However, for aquifer systems with semi-permeable layer composed of thick, soft sedimentary materials, the storativity of the semi-permeable layer is usually much greater than that of the aquifer and its influence should be considered. © 2001 Elsevier Science Ltd. All rights reserved.postprin
Airflow induced by pumping tests in unconfined aquifer with a low-permeability cap
Most analytical and numerical models developed to analyze pumping test data focus on saturated flow below the water table. Traditionally the soil above the initial water table prior to pumping has been thought to have little influence on the test results and has usually been ignored. It is hypothesized that, if the unsaturated zone is capped by low-permeability soil, airflow in the unsaturated zone may be developed during pumping and may have impact on the drawdown in the aquifer. A transient, three-dimensional and variably saturated flow model is employed to simulate the pumping-induced air and groundwater flows in both the saturated zone and unsaturated zone with a low-permeability layer. The results demonstrate that negative pressure in the unsaturated zone can be generated by pumping. The negative pressure begins to appear as the drawdown rate increases to a maximum, approaches a peak before the drawdown rate becomes zero, and then gradually disappears. Drawdown obtained from the capped aquifer is much greater because the water in the pores in the unsaturated zone is sucked by the negative pressure and the gravity drainage from the pores is hampered. Consequently, the drawdown versus time curve does not conform to the traditional S-shaped curve for an unconfined aquifer but is similar to that of a confined aquifer. If the airflow caused by the low-permeability cap is ignored, the error in estimated drawdown could be over 80% for the specific parameters and aquifer configuration used in the study. The possible errors in parameter estimation when airflow is ignored are explored. Overall, the hydraulic conductivity of the aquifer can be overestimated and the specific yield of the aquifer underestimated if airflow is ignored. The estimation error for specific yield tends to be greater than that in hydraulic conductivity. Copyright 2009 by the American Geophysical Union.published_or_final_versio
- …