69 research outputs found

    Stability analysis of different control modes of grid-connected converters under different grid conditions

    Get PDF
    With the sustained popularity of renewable energy generation, high penetration of variable energies, e.g., wind and solar, is reshaping the form of power systems and weakening the strength of the grid. The stability mechanism of the grid-connected converter in a weak power network, however, has yet to be evaluated. This paper establishes impedance and transient models for Grid-Following (GFL) as well as Grid-Forming (GFM) converters through the impedance analysis method and equal area criterion analysis method. The stability of these two control methods is then comprehensively studied under small and large interference with different grid conditions. The analytical results show that the GFM control is more stable against small disturbances in a weak network. In contrast, it is prone to a significant disturbance stability problem in the strong grid due to the large grid impedance. The GFL control is more suitable for a vigorous power grid, whereas introducing oscillation in a weak power grid due to its negative damping. Simulation experiments have verified the accuracy of the analytical results

    Data set for cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization

    Get PDF
    AbstractThe efficient uptake is important for the xylose utilization by Saccharomyces cerevisiae. A heterogenous transporter Mgt05196p was cloned from Meyerozyma guilliermondii and expressed in Saccharomyces cerevisiae [1]. This data article contains the transport characteristics of Mgt05196p in S. cerevisiae. The fluorescence of fusion protein Mgt05196p-GFP expressing strain was located on the cell surface demonstrated that the heterogenous transporter Mgt05196p was targeted to the plasma membrane of S. cerevisiae. The expressing of Mgt05196p in the hxt null S. cerevisiae endowed the strain with the glucose and d-xylose absorption capacity, as well as expressing the native d-xylose transporter Gal2p. The transmembrane domains of Mgt05196p were predicted and compared with the XylEp, whose crystal structure was revealed. And then, the homologous modeling of Mgt05196p was built basing on the XylEp to find out the crucial amino acid residues for sugars binding and transport

    Observation of intervalley quantum interference in epitaxial monolayer WSe2

    Get PDF
    Monolayer (ML) transition metal dichalcogenides (TMDs) have been attracting great research attentions lately for their extraordinary properties, in particular the exotic spin-valley coupled electronic structures that promise future spintronic and valleytronic applications1-3. The energy bands of ML TMDs have well separated valleys that constitute effectively an extra internal degree of freedom for low energy carriers3-12. The large spin-orbit coupling in the TMDs makes the spin index locked to the valley index, which has some interesting consequences such as the magnetoelectric effects in 2H bilayers13. A direct experimental characterization of the spin-valley coupled electronic structure can be of great interests for both fundamental physics and device applications. In this work, we report the first experimental observation of the quasi-particle interference (QPI) patterns in ML WSe2 using low-temperature (LT) scanning tunneling microscopy/spectroscopy (STM/S). We observe intervalley quantum interference involving the Q-valleys in the conduction band due to spin-conserved scattering processes, while spin-flip intervalley scattering is absent. This experiment establishes unequivocally the presence of spin-valley coupling and affirms the large spin-splitting at the Q valleys. Importantly, the inefficient spin-flip intervalley scattering implies long valley and spin lifetime in ML WSe2, which represents a key figure of merit for valley-spintronic applications.Comment: 15 pages, 4 figure

    Dense network of one-dimensional mid-gap metallic modes in monolayer MoSe2 and their spatial undulations

    Get PDF
    We report the observation of a dense triangular network of one-dimensional (1D) metallic modes in a continuous and uniform monolayer of MoSe2 grown by molecular-beam epitaxy. High-resolution transmission electron microscopy and scanning tunneling microscopy and spectroscopy (STM/STS) studies show these 1D modes are mid-gap states at inversion domain boundaries. STM/STS measurements further reveal intensity undulations of the metallic modes, presumably arising from the superlattice potentials due to moire pattern and the quantum confinement effect. A dense network of the metallic modes with high density of states is of great potential for heterocatalysis applications. The interconnection of such mid-gap 1D conducting channels may also imply new transport behaviors distinct from the 2D bulk

    The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment.

    Get PDF
    OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19

    Integration of Metabolomics and Transcriptomics Reveal the Mechanism Underlying Accumulation of Flavonols in Albino Tea Leaves

    No full text
    Albino tea plants (Camellia sinensis) have been reported to possess highly inhibited metabolism of flavonoids compared to regular green tea leaves, which improves the quality of the tea made from these leaves. However, the mechanisms underlying the metabolism of catechins and flavonols in albino tea leaves have not been well elucidated. In this study, we analyzed a time series of leaf samples in the greening process from albino to green in a thermosensitive leaf-color tea mutant using metabolomics and transcriptomics. The total content of polyphenols dramatically decreased, while flavonols (such as rutin) were highly accumulated in albino leaves compared to in green leaves. After treatment with increasing environment temperature, total polyphenols and catechins were increased in albino mutant tea leaves; however, flavonols (especially ortho-dihydroxylated B-rings such as rutin) were decreased. Meanwhile, weighted gene co-expression network analysis of RNA-seq data suggested that the accumulation of flavonols was highly correlated with genes related to reactive oxygen species scavenging. Histochemical localization further demonstrated that this specific accumulation of flavonols might be related to their biological functions in stress tolerance. These findings suggest that the temperature-stimulated accumulation of total polyphenols and catechins in albino mutant tea leaves was highly induced by enhanced photosynthesis and accumulation of its products, while the initial accumulation and temperature inhibition of flavonols in albino mutant tea leaves were associated with metabolism related to oxidative stress. In conclusion, our results indicate that the biosynthesis of flavonoids could be driven by many different factors, including antioxidation and carbon skeleton storage, under favorable and unfavorable circumstances, respectively. This work provides new insights into the drivers of flavonoid biosynthesis in albino tea leaves, which will further help to increase tea quality by improving cultivation measures

    Influence of GeO2 Content on the Spectral and Radiation-Resistant Properties of Yb/Al/Ge Co-Doped Silica Fiber Core Glasses

    No full text
    In this study, Yb/Al/Ge co-doped silica fiber core glasses with different GeO2 contents (0–6.03 mol%) were prepared using the sol–gel method combined with high-temperature sintering. The absorption, fluorescence, radiation-induced absorption, continuous-wave electron paramagnetic resonance spectra, and fluorescence decay curves were recorded and analyzed systematically before and after X-ray irradiation. The effects of GeO2 content on the valence variations of Yb3+/Yb2+ ions, spectral properties of Yb3+ ions, and radiation resistance of Yb/Al/Ge co-doped silica glasses were systematically studied. The results show that even if the GeO2 content of the sample is relatively low (0.62 mol%), it can inhibit the generation of Yb2+ ions with slight improvement in the spectral properties of Yb3+ ions in the pristine samples and effectively improve its radiation resistance. Direct evidence confirms that the generation of trapped-electron centers (Yb2+/Si-E’/Al-E’) and trapped-hole centers (Al-OHC) was effectively inhibited by Ge co-doping. This study provides a theoretical reference for the development of high-performance, radiation-r esistant Yb-doped silica fibers

    Rhabdomyosarcoma of the gallbladder in a child: A case report

    No full text
    Introduction: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The most common sites are the head and neck, followed by the genitourinary tract and the extremities. Gallbladder RMS in pediatric patient has rarely been reported in literature. Case presentation: A 5-year-old boy presented to our clinic with right upper quadrant abdominal pain for about 2 weeks. Abdominal ultrasound (US) and contrast-enhanced computed tomography (CT) revealed a 2.7 × 1.8 cm mass located in the neck of gallbladder. Magnetic resonance cholangiopancreatography (MRCP) confirmed the heterogeneous mass within the gallbladder without invasion of the surrounding structures, without gallbladder wall thickening, and without dilation of the biliary tree. Liver function tests, alpha-fetoprotein (AFP), carcinoembryonic agent (CEA), and cancer antigen 19-9 (CA19-9) were within normal values. The patient underwent an uneventful laparoscopic cholecystectomy. The pathology analysis confirmed a botryoid rhabdomyosarcoma (RMS) of the gallbladder with clear margins. No metastases were detected by postoperative positron emission tomography (PET) scan. The patient received 11 postoperative cycles of chemotherapy with vincristine, cyclophosphamide, and actinomycin-D. At one year of follow up he is well and free of disease. Conclusion: Due to its rare occurrence, the preoperative diagnosis of gallbladder RMS is challenging. Gallbladder RMS should be considered in the differential diagnosis of pediatric patients who present a gallbladder mass
    corecore