144 research outputs found

    Multiple Unpinned Dirac Points in Group-Va Single-layers with Phosphorene Structure

    Full text link
    Emergent Dirac fermion states underlie many intriguing properties of graphene, and the search for them constitute one strong motivation to explore two-dimensional (2D) allotropes of other elements. Phosphorene, the ultrathin layers of black phosphorous, has been a subject of intense investigations recently, and it was found that other group-Va elements could also form 2D layers with similar puckered lattice structure. Here, by a close examination of their electronic band structure evolution, we discover two types of Dirac fermion states emerging in the low-energy spectrum. One pair of (type-I) Dirac points is sitting on high-symmetry lines, while two pairs of (type-II) Dirac points are located at generic kk-points, with different anisotropic dispersions determined by the reduced symmetries at their locations. Such fully-unpinned (type-II) 2D Dirac points are discovered for the first time. In the absence of spin-orbit coupling, we find that each Dirac node is protected by the sublattice symmetry from gap opening, which is in turn ensured by any one of three point group symmetries. The spin-orbit coupling generally gaps the Dirac nodes, and for the type-I case, this drives the system into a quantum spin Hall insulator phase. We suggest possible ways to realize the unpinned Dirac points in strained phosphorene.Comment: 30 pages, 6 figure

    Chronology of the Basalt Units Surrounding Changā€™e-4 Landing Area

    Get PDF
    The Changā€™e-4 (CE-4) lunar probe, the first soft landing spacecraft on the far side of the Moon, successfully landed in the Von KĆ”rmĆ”n crater on 3 January 2019. Geological studies of the landing area have been conducted and more intensive studies will be carried out with the in situ measured data. The chronological study of the maria basalt surrounding the CE-4 landing area is significant to the related studies. Currently, the crater size-frequency distribution (CSFD) technique is the most popular method to derive absolute model ages (AMAs) of geological units where no returned sample is available, and it has been widely used in dating maria basalt on the lunar surface. In this research, we first make a mosaic with multi-orbital Changā€™e-2 (CE-2) images as a base map. Coupled with the elevation data and FeO content, nine representative areas of basalt units surrounding the CE-4 landing area are outlined and their AMAs are derived. The dating results of the nine basalt units indicate that the basalts erupted from 3.42 to 2.28 Ga ago in this area, a period much longer than derived by previous studies. The derived chronology of the above basalt units establishes a foundation for geological analysis of the returned CE-4 data

    Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi's Sarcoma-associated herpesvirus by herpes simplex virus type 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to several acquired immunodeficiency syndrome-related malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and a subset of multicentric Castleman's disease. Regulation of viral lytic replication is critical to the initiation and progression of KS. Recently, we reported that herpes simplex virus type 1 (HSV-1) was an important cofactor that activated lytic cycle replication of KSHV. Here, we further investigated the possible signal pathways involved in HSV-1-induced reactivation of KSHV.</p> <p>Results</p> <p>By transfecting a series of dominant negative mutants and protein expressing constructs and using pharmacologic inhibitors, we found that either Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) or JAK1/STAT6 signaling failed to regulate HSV-1-induced KSHV replication. However, HSV-1 infection of BCBL-1 cells activated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, also called AKT) pathway and inactivated phosphatase and tensin homologue deleted on chromosome ten (PTEN) and glycogen synthase kinase-3Ī² (GSK-3Ī²). PTEN/PI3K/AKT/GSK-3Ī² pathway was found to be involved in HSV-1-induced KSHV reactivation. Additionally, extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinase (MAPK) pathway also partially contributed to HSV-1-induced KSHV replication.</p> <p>Conclusions</p> <p>HSV-1 infection stimulated PI3K/AKT and ERK MAPK signaling pathways that in turn contributed to KSHV reactivation, which provided further insights into the molecular mechanism controlling KSHV lytic replication, particularly in the context of HSV-1 and KSHV co-infection.</p

    Timing of Maximal Weight Reduction Following Bariatric Surgery: A Study in Chinese Patients

    Get PDF
    Introduction: Bariatric surgery is a well-received treatment for obesity with maximal weight loss at 12ā€“36 months postoperatively. We investigated the effect of early bariatric surgery on weight reduction of Chinese patients in accordance with their preoperation characteristics. Materials and Methods: Altogether, 409 patients with obesity from a prospective cohort in a single bariatric center were enrolled retrospectively and evaluated for up to 4 years. Measurements obtained included surgery type, duration of diabetic condition, besides the usual body mass index data tuple. Weight reduction was expressed as percent total weight loss (%TWL) and percent excess weight loss (%EWL). Results: RYGB or SG were performed laparoscopically without mortality or complications. BMI generally plateaued at 12 months, having decreased at a mean of 8.78 kg/m2. Successful weight loss of \u3e 25% TWL was achieved by 35.16, 49.03, 39.22, 27.74, 20.83% of patients at 6, 12, 24, 36, and 48 months after surgery. Overall, 52.91% of our patients had lost 100% of their excess weight at 12 months, although there was a rather wide range among individuals. Similar variability was revealed in women of child-bearing age. Conclusion: Chinese patients undergoing bariatric surgery tend to achieve maximal weight loss and stabilization between 12 and 24 months postoperatively, instead of at \u3e 2 years. The finding of the shorter stabilization interval has importance to earlier intervention of weight loss related conditions and women\u27s conception planning

    Magnetic Resonance Spectroscopy Quantification Aided by Deep Estimations of Imperfection Factors and Macromolecular Signal

    Full text link
    Objective: Magnetic Resonance Spectroscopy (MRS) is an important technique for biomedical detection. However, it is challenging to accurately quantify metabolites with proton MRS due to serious overlaps of metabolite signals, imperfections because of non-ideal acquisition conditions, and interference with strong background signals mainly from macromolecules. The most popular method, LCModel, adopts complicated non-linear least square to quantify metabolites and addresses these problems by designing empirical priors such as basis-sets, imperfection factors. However, when the signal-to-noise ratio of MRS signal is low, the solution may have large deviation. Methods: Linear Least Squares (LLS) is integrated with deep learning to reduce the complexity of solving this overall quantification. First, a neural network is designed to explicitly predict the imperfection factors and the overall signal from macromolecules. Then, metabolite quantification is solved analytically with the introduced LLS. In our Quantification Network (QNet), LLS takes part in the backpropagation of network training, which allows the feedback of the quantification error into metabolite spectrum estimation. This scheme greatly improves the generalization to metabolite concentrations unseen for training compared to the end-to-end deep learning method. Results: Experiments show that compared with LCModel, the proposed QNet, has smaller quantification errors for simulated data, and presents more stable quantification for 20 healthy in vivo data at a wide range of signal-to-noise ratio. QNet also outperforms other end-to-end deep learning methods. Conclusion: This study provides an intelligent, reliable and robust MRS quantification. Significance: QNet is the first LLS quantification aided by deep learning

    CloudBrain-MRS: An Intelligent Cloud Computing Platform for in vivo Magnetic Resonance Spectroscopy Preprocessing, Quantification, and Analysis

    Full text link
    Magnetic resonance spectroscopy (MRS) is an important clinical imaging method for diagnosis of diseases. MRS spectrum is used to observe the signal intensity of metabolites or further infer their concentrations. Although the magnetic resonance vendors commonly provide basic functions of spectra plots and metabolite quantification, the widespread clinical research of MRS is still limited due to the lack of easy-to-use processing software or platform. To address this issue, we have developed CloudBrain-MRS, a cloud-based online platform that provides powerful hardware and advanced algorithms. The platform can be accessed simply through a web browser, without the need of any program installation on the user side. CloudBrain-MRS also integrates the classic LCModel and advanced artificial intelligence algorithms and supports batch preprocessing, quantification, and analysis of MRS data from different vendors. Additionally, the platform offers useful functions: 1) Automatically statistical analysis to find biomarkers for diseases; 2) Consistency verification between the classic and artificial intelligence quantification algorithms; 3) Colorful three-dimensional visualization for easy observation of individual metabolite spectrum. Last, both healthy and mild cognitive impairment patient data are used to demonstrate the functions of the platform. To the best of our knowledge, this is the first cloud computing platform for in vivo MRS with artificial intelligence processing. We have shared our cloud platform at MRSHub, providing free access and service for two years. Please visit https://mrshub.org/software_all/#CloudBrain-MRS or https://csrc.xmu.edu.cn/CloudBrain.html.Comment: 11 pages, 12 figure

    Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data: Break Training Data Bottleneck in Artificial Intelligence

    Full text link
    Diffusion magnetic resonance imaging (MRI) is the only imaging modality for non-invasive movement detection of in vivo water molecules, with significant clinical and research applications. Diffusion MRI (DWI) acquired by multi-shot techniques can achieve higher resolution, better signal-to-noise ratio, and lower geometric distortion than single-shot, but suffers from inter-shot motion-induced artifacts. These artifacts cannot be removed prospectively, leading to the absence of artifact-free training labels. Thus, the potential of deep learning in multi-shot DWI reconstruction remains largely untapped. To break the training data bottleneck, here, we propose a Physics-Informed Deep DWI reconstruction method (PIDD) to synthesize high-quality paired training data by leveraging the physical diffusion model (magnitude synthesis) and inter-shot motion-induced phase model (motion phase synthesis). The network is trained only once with 100,000 synthetic samples, achieving encouraging results on multiple realistic in vivo data reconstructions. Advantages over conventional methods include: (a) Better motion artifact suppression and reconstruction stability; (b) Outstanding generalization to multi-scenario reconstructions, including multi-resolution, multi-b-value, multi-undersampling, multi-vendor, and multi-center; (c) Excellent clinical adaptability to patients with verifications by seven experienced doctors (p<0.001). In conclusion, PIDD presents a novel deep learning framework by exploiting the power of MRI physics, providing a cost-effective and explainable way to break the data bottleneck in deep learning medical imaging.Comment: 23 pages, 16 figure

    One for Multiple: Physics-informed Synthetic Data Boosts Generalizable Deep Learning for Fast MRI Reconstruction

    Full text link
    Magnetic resonance imaging (MRI) is a principal radiological modality that provides radiation-free, abundant, and diverse information about the whole human body for medical diagnosis, but suffers from prolonged scan time. The scan time can be significantly reduced through k-space undersampling but the introduced artifacts need to be removed in image reconstruction. Although deep learning (DL) has emerged as a powerful tool for image reconstruction in fast MRI, its potential in multiple imaging scenarios remains largely untapped. This is because not only collecting large-scale and diverse realistic training data is generally costly and privacy-restricted, but also existing DL methods are hard to handle the practically inevitable mismatch between training and target data. Here, we present a Physics-Informed Synthetic data learning framework for Fast MRI, called PISF, which is the first to enable generalizable DL for multi-scenario MRI reconstruction using solely one trained model. For a 2D image, the reconstruction is separated into many 1D basic problems and starts with the 1D data synthesis, to facilitate generalization. We demonstrate that training DL models on synthetic data, integrated with enhanced learning techniques, can achieve comparable or even better in vivo MRI reconstruction compared to models trained on a matched realistic dataset, reducing the demand for real-world MRI data by up to 96%. Moreover, our PISF shows impressive generalizability in multi-vendor multi-center imaging. Its excellent adaptability to patients has been verified through 10 experienced doctors' evaluations. PISF provides a feasible and cost-effective way to markedly boost the widespread usage of DL in various fast MRI applications, while freeing from the intractable ethical and practical considerations of in vivo human data acquisitions.Comment: 22 pages, 9 figures, 1 tabl
    • ā€¦
    corecore