120 research outputs found

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    VSG-Based Parameter Adaptive Control Strategy

    No full text
    As a large number of converters composed of power electronic devices are connected to the grid, power system has gradually decreased stability. How to increase dynamic response of the converter has become one of the research hotspots. Virtual synchronous generator technology (VSG) can endow the converter with moment of inertia and damping characteristics, thereby enhancing dynamic response, but the traditional VSG technology cannot achieve the optimal control effect. To solve this problem, an adaptive control strategy is proposed, which takes logical combination of system angular velocity and frequency change as the real-time change condition, with exponential function as the change expression. Finally, this paper uses MATLAB / Simulink to compare the method in this paper with several existing typical control strategies

    Low Temperature Rate Constants for the N + CN → N₂ + C Reaction: Two-Dimensional Quantum Capture Calculations on an Accurate Potential Energy Surface

    No full text
    The title reaction is thought to be responsible for the production of molecular nitrogen in interstellar clouds. In this work, we report quantum capture calculations on a new two-dimensional potential energy surface determined by interpolating high-level ab initio data. The low-temperature rate constant calculated using a capture model is quite large and has a positive temperature dependence, in agreement with a recent experiment. The origin of the aforementioned behaviors of the rate constant is analyzed

    Communication: Highly Accurate Ozone Formation Potential and Implications for Kinetics

    No full text
    Atmospheric ozone is formed by the O + O2 exchange reaction followed by collisional stabilization of the O3* intermediate. The dynamics of the O + O2 reaction and to a lesser extent the O 3 stabilization depend sensitively on the underlying potential energy surface, particularly in the asymptotic region. Highly accurate Davidson corrected multi-state multi-reference configuration interaction calculations reported here reveal that the minimal energy path for the formation of O 3 from O + O2 is a monotonically decaying function of the atom-diatom distance and contains no reef feature found in previous ab initio calculations. The absence of a submerged barrier leads to an exchange rate constant with the correct temperature dependence and is in better agreement with experiment, as shown by quantum scattering calculations

    Study of control system for X-ray generator

    No full text
    • …
    corecore