317 research outputs found

    Multi-Label Self-Supervised Learning with Scene Images

    Full text link
    Self-supervised learning (SSL) methods targeting scene images have seen a rapid growth recently, and they mostly rely on either a dedicated dense matching mechanism or a costly unsupervised object discovery module. This paper shows that instead of hinging on these strenuous operations, quality image representations can be learned by treating scene/multi-label image SSL simply as a multi-label classification problem, which greatly simplifies the learning framework. Specifically, multiple binary pseudo-labels are assigned for each input image by comparing its embeddings with those in two dictionaries, and the network is optimized using the binary cross entropy loss. The proposed method is named Multi-Label Self-supervised learning (MLS). Visualizations qualitatively show that clearly the pseudo-labels by MLS can automatically find semantically similar pseudo-positive pairs across different images to facilitate contrastive learning. MLS learns high quality representations on MS-COCO and achieves state-of-the-art results on classification, detection and segmentation benchmarks. At the same time, MLS is much simpler than existing methods, making it easier to deploy and for further exploration.Comment: ICCV202

    Instance-based Max-margin for Practical Few-shot Recognition

    Full text link
    In order to mimic the human few-shot learning (FSL) ability better and to make FSL closer to real-world applications, this paper proposes a practical FSL (pFSL) setting. pFSL is based on unsupervised pretrained models (analogous to human prior knowledge) and recognizes many novel classes simultaneously. Compared to traditional FSL, pFSL is simpler in its formulation, easier to evaluate, more challenging and more practical. To cope with the rarity of training examples, this paper proposes IbM2, an instance-based max-margin method not only for the new pFSL setting, but also works well in traditional FSL scenarios. Based on the Gaussian Annulus Theorem, IbM2 converts random noise applied to the instances into a mechanism to achieve maximum margin in the many-way pFSL (or traditional FSL) recognition task. Experiments with various self-supervised pretraining methods and diverse many- or few-way FSL tasks show that IbM2 almost always leads to improvements compared to its respective baseline methods, and in most cases the improvements are significant. With both the new pFSL setting and novel IbM2 method, this paper shows that practical few-shot learning is both viable and promising

    Worst Case Matters for Few-Shot Recognition

    Full text link
    Few-shot recognition learns a recognition model with very few (e.g., 1 or 5) images per category, and current few-shot learning methods focus on improving the average accuracy over many episodes. We argue that in real-world applications we may often only try one episode instead of many, and hence maximizing the worst-case accuracy is more important than maximizing the average accuracy. We empirically show that a high average accuracy not necessarily means a high worst-case accuracy. Since this objective is not accessible, we propose to reduce the standard deviation and increase the average accuracy simultaneously. In turn, we devise two strategies from the bias-variance tradeoff perspective to implicitly reach this goal: a simple yet effective stability regularization (SR) loss together with model ensemble to reduce variance during fine-tuning, and an adaptability calibration mechanism to reduce the bias. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed strategies, which outperforms current state-of-the-art methods with a significant margin in terms of not only average, but also worst-case accuracy. Our code is available at https://github.com/heekhero/ACSR.Comment: Accepted by ECCV202

    Low-rank Attention Side-Tuning for Parameter-Efficient Fine-Tuning

    Full text link
    In finetuning a large pretrained model to downstream tasks, parameter-efficient fine-tuning (PEFT) methods can effectively finetune pretrained models with few trainable parameters, but suffer from high GPU memory consumption and slow training speed. Because learnable parameters from these methods are entangled with the pretrained model, gradients related to the frozen pretrained model's parameters have to be computed and stored during finetuning. We propose Low-rank Attention Side-Tuning (LAST), which disentangles the trainable module from the pretrained model by freezing not only parameters but also outputs of the pretrained network. LAST trains a side-network composed of only low-rank self-attention modules. By viewing the pretrained model as a frozen feature extractor, the side-network takes intermediate output from the pretrained model and focus on learning task-specific knowledge. We also show that LAST can be highly parallel across multiple optimization objectives, making it very efficient in downstream task adaptation, for example, in finding optimal hyperparameters. LAST outperforms previous state-of-the-art methods on VTAB-1K and other visual adaptation tasks with roughly only 30\% of GPU memory footprint and 60\% of training time compared to existing PEFT methods, but achieves significantly higher accuracy

    Randomized Parameterized Algorithms for the Kidney Exchange Problem

    Get PDF
    In order to increase the potential kidney transplants between patients and their incompatible donors, kidney exchange programs have been created in many countries. In the programs, designing algorithms for the kidney exchange problem plays a critical role. The graph theory model of the kidney exchange problem is to find a maximum weight packing of vertex-disjoint cycles and chains for a given weighted digraph. In general, the length of cycles is not more than a given constant L (typically 2 L 5), and the objective function corresponds to maximizing the number of possible kidney transplants. In this paper, we study the parameterized complexity and randomized algorithms for the kidney exchange problem without chains from theory. We construct two different parameterized models of the kidney exchange problem for two cases L = 3 and L 3, and propose two randomized parameterized algorithms based on the random partitioning technique and the randomized algebraic technique, respectively

    Measurement framework for assessing disruptive innovations

    Get PDF
    Assessing potential disruptiveness of innovations is an important but challenging task for incumbents. However, the extant literature focuses only on technological and marketplace aspects, and most of the documented methods tend to be case specific. In this study, we present a multidimensional measurement framework to assess the disruptive potential of product innovations. The framework is designed based on the concept that the nature of disruptive innovations is multidimensional. Three aspects are considered, i.e., technological features, marketplace dynamics and external environment. Ten indicators of the three categories are proposed and then connected based on the conceptual and literature analysis. Three innovations, namely, WeChat (successful), Modularised Mobile Phone (failed) and Virtual Reality/Augmented Reality (ongoing), are selected as case studies. A panel of industrial experts with PhD degree in engineering is surveyed. The survey results are calculated and analysed according to the framework and then compared against the developments of the innovations. We also check the robustness of this framework by surveying other groups of people, and the results are nearly identical to the previous findings. This study enables a systematic assessment of disruptive potential of innovations using the framework, providing insights for decisions in product launch and resource allocation.fi=vertaisarvioitu|en=peerReviewed

    Rectify the Regression Bias in Long-Tailed Object Detection

    Full text link
    Long-tailed object detection faces great challenges because of its extremely imbalanced class distribution. Recent methods mainly focus on the classification bias and its loss function design, while ignoring the subtle influence of the regression branch. This paper shows that the regression bias exists and does adversely and seriously impact the detection accuracy. While existing methods fail to handle the regression bias, the class-specific regression head for rare classes is hypothesized to be the main cause of it in this paper. As a result, three kinds of viable solutions to cater for the rare categories are proposed, including adding a class-agnostic branch, clustering heads and merging heads. The proposed methods brings in consistent and significant improvements over existing long-tailed detection methods, especially in rare and common classes. The proposed method achieves state-of-the-art performance in the large vocabulary LVIS dataset with different backbones and architectures. It generalizes well to more difficult evaluation metrics, relatively balanced datasets, and the mask branch. This is the first attempt to reveal and explore rectifying of the regression bias in long-tailed object detection

    Hyperbolic Geometric Graph Representation Learning for Hierarchy-imbalance Node Classification

    Full text link
    Learning unbiased node representations for imbalanced samples in the graph has become a more remarkable and important topic. For the graph, a significant challenge is that the topological properties of the nodes (e.g., locations, roles) are unbalanced (topology-imbalance), other than the number of training labeled nodes (quantity-imbalance). Existing studies on topology-imbalance focus on the location or the local neighborhood structure of nodes, ignoring the global underlying hierarchical properties of the graph, i.e., hierarchy. In the real-world scenario, the hierarchical structure of graph data reveals important topological properties of graphs and is relevant to a wide range of applications. We find that training labeled nodes with different hierarchical properties have a significant impact on the node classification tasks and confirm it in our experiments. It is well known that hyperbolic geometry has a unique advantage in representing the hierarchical structure of graphs. Therefore, we attempt to explore the hierarchy-imbalance issue for node classification of graph neural networks with a novelty perspective of hyperbolic geometry, including its characteristics and causes. Then, we propose a novel hyperbolic geometric hierarchy-imbalance learning framework, named HyperIMBA, to alleviate the hierarchy-imbalance issue caused by uneven hierarchy-levels and cross-hierarchy connectivity patterns of labeled nodes.Extensive experimental results demonstrate the superior effectiveness of HyperIMBA for hierarchy-imbalance node classification tasks.Comment: Accepted by Web Conference (WWW) 202

    Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization

    Full text link
    Dynamic graph neural networks (DGNNs) are increasingly pervasive in exploiting spatio-temporal patterns on dynamic graphs. However, existing works fail to generalize under distribution shifts, which are common in real-world scenarios. As the generation of dynamic graphs is heavily influenced by latent environments, investigating their impacts on the out-of-distribution (OOD) generalization is critical. However, it remains unexplored with the following two major challenges: (1) How to properly model and infer the complex environments on dynamic graphs with distribution shifts? (2) How to discover invariant patterns given inferred spatio-temporal environments? To solve these challenges, we propose a novel Environment-Aware dynamic Graph LEarning (EAGLE) framework for OOD generalization by modeling complex coupled environments and exploiting spatio-temporal invariant patterns. Specifically, we first design the environment-aware EA-DGNN to model environments by multi-channel environments disentangling. Then, we propose an environment instantiation mechanism for environment diversification with inferred distributions. Finally, we discriminate spatio-temporal invariant patterns for out-of-distribution prediction by the invariant pattern recognition mechanism and perform fine-grained causal interventions node-wisely with a mixture of instantiated environment samples. Experiments on real-world and synthetic dynamic graph datasets demonstrate the superiority of our method against state-of-the-art baselines under distribution shifts. To the best of our knowledge, we are the first to study OOD generalization on dynamic graphs from the environment learning perspective.Comment: Accepted by the 37th Conference on Neural Information Processing Systems (NeurIPS 2023
    corecore