287 research outputs found

    An extremely bad-cavity laser

    Full text link
    Lasing in the bad-cavity regime has promising applications in precision measurement and frequency metrology due to the reduced sensitivity of the laser frequency to cavity length fluctuations. Thus far, relevant studies have been mainly focused on conventional cavities whose finesse is high enough that the resonance linewidth is sufficiently narrow compared to the cavity's free spectral range, though still in the bad-cavity regime. However, lasing output from the cavity whose finesse is close to the limit of 2 has never been experimentally accessed. Here, we demonstrate an extremely bad-cavity laser, analyze the physical mechanisms limiting cavity finesse, and report on the worst ever laser cavity with finesse reaching 2.01. The optical cavity has a reflectance close to zero and only provides a weak optical feedback. The laser power can be as high as tens of μ\muW and the spectral linewidth reaches a few kHz, over one thousand times narrower than the gain bandwidth. In addition, the measurement of cavity pulling reveals a pulling coefficient of 0.0148, the lowest value ever achieved for a continuous wave laser. Our findings open up an unprecedentedly innovative perspective for future new ultra-stable lasers, which could possibly trigger the future discoveries in optical clocks, cavity QED, continuous wave superradiant laser, and explorations of quantum manybody physics

    Self-assembly of block-copolymer chains to promote the dispersion of nanoparticles in polymer nanocomposites

    Get PDF
    In this paper we adopt molecular-dynamics simulations to study the amphiphilic AB block-copolymer (BCP) mediated nanoparticles (NPs) dispersion in polymer nanocomposites (PNCs), with the A-block being compatible with the NPs and the B-block being miscible with the polymer matrix. The effects of the number and components of BCP, as well as the interaction strength between A-block and NPs on the spatial organization of NPs are explored. We find the increase of the fraction of the A-block brings different dispersion effect to NPs than that of B-block. We also find that the best dispersion state of the NPs occurs in the case of a moderate interaction strength between the A-block and the NPs. Meanwhile, the stress-strain behaviour is probed. Our simulation results verify that adopting BCP is an effective way to adjust the dispersion of NPs in the polymer matrix, further to manipulate the mechanical properties.</p

    An 852 nm Faraday laser with 8 kHz linewidth based on corner-cube retroreflector

    Full text link
    A single-mode Cs atom 852 nm Faraday laser based on the corner-cube reflector feedback is first demonstrated to our best knowledge. Using the corner-cube reflector as external cavity feedback in Faraday laser, the robustness can be greatly improved. This Faraday laser can always achieve laser oscillation unless the angle between incident light and the optical axis of corner-cube retroreflector is beyond the plus or minus 3{\deg} range. Furthermore, the Faraday laser achieves single-mode operation within the current range of 100 mA , and its output wavelength is automatically limited to the vicinity of the Cs atomic transition lines. The wavelength fluctuation range is limited to plus or minus 1.2 pm within 9 hours under +3{\deg} rotation angle. Moreover, the most probable linewidth is 7.97 kHz measured by heterodyne beating. The Faraday laser with high robustness as well as narrow linewidth can be widely used in quantum precision measurement fields including quantum optics, atomic clocks, atomic magnetometers, cold atoms, and atomic gravimeters, etc

    Experimental observation of wave localization at the Dirac frequency in a two-dimensional photonic crystal microcavity

    Get PDF
    Trapping light within cavities or waveguides in photonic crystals is an effective technology in modern integrated optics. Traditionally, cavities rely on total internal reflection or a photonic bandgap to achieve field confinement. Recent investigations have examined new localized modes that occur at a Dirac frequency that is beyond any complete photonic bandgap. We design Al2O3 dielectric cylinders placed on a triangular lattice in air, and change the central rod size to form a photonic crystal microcavity. It is predicted that waves can be localized at the Dirac frequency in this device without photonic bandgaps or total internal reflections. We perform a theoretical analysis of this new wave localization and verify it experimentally. This work paves the way for exploring localized defect modes at the Dirac point in the visible and infrared bands, with potential applicability to new optical devices

    The transition from incoherent to coherent random laser in defect waveguide based on organic/inorganic hybrid laser dye

    Get PDF
    This paper systematically demonstrated a variety of experimental phenomena of random lasers (RLs) of N,N′-di-(3-(isobutyl polyhedral oligomeric silsesquioxanes)propyl) perylene diimide (DPP) organic/inorganic hybrid laser dye, which is composed of perylene diimide (PDI) as gain media and polyhedral oligomeric silsesquioxanes (POSS) as scattering media at a mole ratio of 1:2. In this work, we observe the transition from incoherent RL in the DPP-doped solutions and polymer membrane systems using dip-coating method to coherent RL in the polymer membrane system with defect waveguide using semi-polymerization (SP) coating method. Meanwhile, we found that the hybrid dye-DPP has a long lasing lifetime compared with the traditional laser dyes, which indicates that the POSS group can suppress the photo-bleaching effect to extend the working life of laser dyes

    Cold-atom optical filtering enhanced by optical pumping

    Get PDF
    Atomic optical filters such as Faraday anomalous dispersion optical filters (FADOFs) or similar technologies can achieve very narrow optical bandwidth close to the scale of atomic linewidth, which can be greatly reduced in cold atoms. However, limited by the number of cold atoms and the size of the cold atomic cloud, the number of atoms interacting with the laser is reduced, and the transmission remains as low as 2%. In this work, we introduce the optical pumping into the cold atomic optical filter to solve this problem. Circular polarized optical pumping can produce polarization of the atomic ensemble and induce dichromatic as well as the Faraday rotation. We demonstrate a cold-atom optical filter which operates on the 87Rb 52S1/2 (F=2) to 52P3/2 (F′=2) transition at 780 nm. The filter achieves an ultranarrow bandwidth of 6.6(4) MHz, and its peak transmission is 15.6%, which is nearly 14 times higher than that of the cold-atom optical filter realized by Faraday magneto-optic effect. This scheme can be extended to almost all kinds of atomic optical filters and may find applications in self-stabilizing laser and active optical clock

    Over 100 mW stable low-noise single-frequency ring-cavity fiber laser based on a saturable absorber of Bi/Er/Yb co-doped silica fiber

    Get PDF
    Two kinds of Yb-doped fibers were fabricated, namely, Yb: YAG crystal-derived silica fibers (YCDSFs) with a gain coefficient of 6.0 dB/cm, and Bi/Er/Yb co-doped silica fibers having a Yb concentration of 0.1310^26 ion/m^3. Based on these fibers, a ring-cavity single-frequency fiber laser (SFFL) has been constructed, in which the YCDSF was used as a gain medium and the Bi/Er/Yb co-doped fiber acted as a saturable absorber. It has been demonstrated that the SFFL had an over 100 mW output at 1030 nm, slope-efficiency of up to 18.3%, and an optical signal-to-noise ratio of over 63 dB. The fluctuation of the output power of the laser was less than 0.65% of 103.5 mW within 10 hrs and no mode-hopping was observed for 5 hrs. The SFFL had a linewidth <7.5 kHz at the maximum output power, and the measured relative intensity noise was lower than 142 dB/Hz at a frequency above 1.0 MHz. The results indicate that the ring-cavity SFFL built could be used as a laser source for applications in a high-power fiber laser, and high-precision optical fiber sensing and detection

    Broadband high-gain Yb : YAG crystal-derived silica fiber for low noise tunable single-frequency fiber laser

    Get PDF
    An over 75 nm broadband spectrum with a gain per unit length of >2 dB/cm was obtained from a homemade Yb: YAG crystal-derived silica fiber (YCDSF) with Yb-doping concertation of 6.57 wt.%. Using a 13-cm-long YCDSF, a low-noise wavelength-tunable single-frequency fiber laser has been constructed, enabling a single longitudinal mode oscillation from 1009 to 1070 nm. In particular, in the 1023-1056 nm waveband, the laser operating at any wavelength exhibited a maximum output power over 37 mW with power fluctuations below 0.38%, a slope efficiency >8%, and an optical signal-to-noise ratio higher than 60 dB. A linewidth of less than 2.8 kHz was also observed at the maximum pump powers, and relative intensity noise was as low as -155 dB/Hz at frequencies above 1.0 MHz. These results indicate that the YCDSFs with broadband high-gain characteristics are promising for wavelength-tunable fiber lasers in applications such as optical coherence tomography, precision metrology, nonlinear frequency conversion, and so on

    PeHVA22 gene family in passion fruit (Passiflora edulis): initial characterization and expression profiling diversity

    Get PDF
    Passion fruit, an economically valuable fruit crop, is highly vulnerable to adverse climate conditions. The HVA22 genes, recognized as abscisic acid (ABA) and stress-inducible, play vital roles in stress response and growth regulation in diverse eukaryotic organisms. Here, six HVA22 genes were firstly identified in passion fruit genome and all predicted to be localized within the endoplasmic reticulum. Phylogenetic analyses showed that all PeHVA22s were divided into four subgroups. The gene structural features of PeHVA22 genes clustered in the same subgroup were relatively conserved, while the gene structure characteristics of PeHVA22s from different subgroups varied significantly. PeHVA22A and PeHVA22C closely clustered with barley HVA22 in Group II, were also induced by ABA and drought stress treatment, suggesting conserved roles similar to barley HVA22. Meanwhile, most PeHVA22s exhibited induced expression post-drought treatment but were suppressed under salt, low and high-temperature conditions, indicating a unique role in drought response. Additionally, PeHVA22s displayed tissue-specific expression patterns across diverse tissues, except for PeHVA22B which maybe a pseudogene. Notably, PeHVA22C, PeHVA22E, and PeHVA22F predominantly expressed in fruit, indicating their involvement in fruit development. Almost all PeHVA22s showed variable expression at different developmental stages of stamens or ovules, implying their roles in passion fruit’s sexual reproduction. The intricate roles of PeHVA22s may result from diverse regulatory factors including transcription factors and CREs related to plant growth and development, hormone and stress responsiveness. These observations highlighted that PeHVA22s might play conserved roles in ABA response and drought stress tolerance, and also be participated in the regulation of passion fruit growth and floral development
    • …
    corecore