31 research outputs found

    Fairness-aware Competitive Bidding Influence Maximization in Social Networks

    Full text link
    Competitive Influence Maximization (CIM) has been studied for years due to its wide application in many domains. Most current studies primarily focus on the micro-level optimization by designing policies for one competitor to defeat its opponents. Furthermore, current studies ignore the fact that many influential nodes have their own starting prices, which may lead to inefficient budget allocation. In this paper, we propose a novel Competitive Bidding Influence Maximization (CBIM) problem, where the competitors allocate budgets to bid for the seeds attributed to the platform during multiple bidding rounds. To solve the CBIM problem, we propose a Fairness-aware Multi-agent Competitive Bidding Influence Maximization (FMCBIM) framework. In this framework, we present a Multi-agent Bidding Particle Environment (MBE) to model the competitors' interactions, and design a starting price adjustment mechanism to model the dynamic bidding environment. Moreover, we put forward a novel Multi-agent Competitive Bidding Influence Maximization (MCBIM) algorithm to optimize competitors' bidding policies. Extensive experiments on five datasets show that our work has good efficiency and effectiveness.Comment: IEEE Transactions on Computational Social Systems (TCSS), 2023, early acces

    SEMANTIC NETWORKS FOR ENGINEERING DESIGN: A SURVEY

    No full text
    AbstractThere have been growing uses of semantic networks in the past decade, such as leveraging large-scale pre-trained graph knowledge databases for various natural language processing (NLP) tasks in engineering design research. Therefore, the paper provides a survey of the research that has employed semantic networks in the engineering design research community. The survey reveals that engineering design researchers have primarily relied on WordNet, ConceptNet, and other common-sense semantic network databases trained on non-engineering data sources to develop methods or tools for engineering design. Meanwhile, there are emerging efforts to mine large scale technical publication and patent databases to construct engineering-contextualized semantic network databases, e.g., B-Link and TechNet, to support NLP in engineering design. On this basis, we recommend future research directions for the construction and applications of engineering-related semantic networks in engineering design research and practice.</jats:p

    Transcriptomics analysis revealed that TAZ regulates the proliferation of KIRC cells through mitophagy

    No full text
    Abstract Transcriptional Co-Activator with PDZ-Binding Motif (TAZ, also known as WWTR1) is a downstream effector of the Hippo pathway, involved in the regulation of organ regeneration and cell differentiation in processes such as development and regeneration. TAZ has been shown to play a tumor-promoting role in various cancers. Currently, many studies focus on the role of TAZ in the process of mitophagy. However, the molecular mechanism and biological function of TAZ in renal clear cell carcinoma (KIRC) are still unclear. Therefore, we systematically analyzed the mRNA expression profile and clinical data of KIRC in The Cancer Genome Atlas (TCGA) dataset. We found that TAZ expression was significantly upregulated in KIRC compared with normal kidney tissue and was closely associated with poor prognosis of patients. Combined with the joint analysis of 36 mitophagy genes, it was found that TAZ was significantly negatively correlated with the positive regulators of mitophagy. Finally, our results confirmed that high expression of TAZ in KIRC inhibits mitophagy and promotes KIRC cell proliferation. In conclusion, our findings reveal the important role of TAZ in KIRC and have the potential to be a new target for KIRC therapy

    The Function of Selenium in Central Nervous System: Lessons from MsrB1 Knockout Mouse Models

    No full text
    MsrB1 used to be named selenoprotein R, for it was first identified as a selenocysteine containing protein by searching for the selenocysteine insert sequence (SECIS) in the human genome. Later, it was found that MsrB1 is homologous to PilB in Neisseria gonorrhoeae, which is a methionine sulfoxide reductase (Msr), specifically reducing L-methionine sulfoxide (L-Met-O) in proteins. In humans and mice, four members constitute the Msr family, which are MsrA, MsrB1, MsrB2, and MsrB3. MsrA can reduce free or protein-containing L-Met-O (S), whereas MsrBs can only function on the L-Met-O (R) epimer in proteins. Though there are isomerases existent that could transfer L-Met-O (S) to L-Met-O (R) and vice-versa, the loss of Msr individually results in different phenotypes in mice models. These observations indicate that the function of one Msr cannot be totally complemented by another. Among the mammalian Msrs, MsrB1 is the only selenocysteine-containing protein, and we recently found that loss of MsrB1 perturbs the synaptic plasticity in mice, along with the astrogliosis in their brains. In this review, we summarized the effects resulting from Msr deficiency and the bioactivity of selenium in the central nervous system, especially those that we learned from the MsrB1 knockout mouse model. We hope it will be helpful in better understanding how the trace element selenium participates in the reduction of L-Met-O and becomes involved in neurobiology

    The Function of Selenium in Central Nervous System: Lessons from MsrB1 Knockout Mouse Models

    No full text
    MsrB1 used to be named selenoprotein R, for it was first identified as a selenocysteine containing protein by searching for the selenocysteine insert sequence (SECIS) in the human genome. Later, it was found that MsrB1 is homologous to PilB in Neisseria gonorrhoeae, which is a methionine sulfoxide reductase (Msr), specifically reducing L-methionine sulfoxide (L-Met-O) in proteins. In humans and mice, four members constitute the Msr family, which are MsrA, MsrB1, MsrB2, and MsrB3. MsrA can reduce free or protein-containing L-Met-O (S), whereas MsrBs can only function on the L-Met-O (R) epimer in proteins. Though there are isomerases existent that could transfer L-Met-O (S) to L-Met-O (R) and vice-versa, the loss of Msr individually results in different phenotypes in mice models. These observations indicate that the function of one Msr cannot be totally complemented by another. Among the mammalian Msrs, MsrB1 is the only selenocysteine-containing protein, and we recently found that loss of MsrB1 perturbs the synaptic plasticity in mice, along with the astrogliosis in their brains. In this review, we summarized the effects resulting from Msr deficiency and the bioactivity of selenium in the central nervous system, especially those that we learned from the MsrB1 knockout mouse model. We hope it will be helpful in better understanding how the trace element selenium participates in the reduction of L-Met-O and becomes involved in neurobiology

    Organokaolin for the uptake of pharmaceuticals diclofenac and chloramphenicol from water

    No full text
    Organoclays were used as landfill liners, with added value of its enhanced uptake and retention of hydrophobic organic compounds. In addition, uptake of inorganic anions on organoclays was attributed to the electrostatic interactions between the negatively charged anions and the positively charged surfactant admicelle or bilayer formation on the surface of clays. In this study, interactions between anionic drug diclofenac (DC) and neutral chloramphenicol (CP) and organokaolin (OK) were investigated to seek further expansion of using organoclays to present seepage and leaching of waters containing emerging compounds such as pharmaceuticals. Different preparations of OK had drastic effect on the performance of drug uptake on OK. Under the surfactant bilayer surface coverage, the uptake of DC was fast and followed the Langmuir sorption isotherm. The amount of DC adsorbed far exceeded the anion exchange capacity of the OK, suggesting other interactions besides electrostatic interactions played an important role. On the contrary, the uptake of CP followed a linear sorption isotherm. Zeta potential determination confirmed changes of surface charges, while contact angle measurements showed progressive increases in hydrophobicity as the surfactant loading level increases. Instrumental analyses indicated that the drug uptake was limited to the external surfaces of OK and the sorption of DC involve in the -C=O functional group. Molecular simulation revealed possible interactions via the amine group for DC sorption. The mechanistic study confirmed the validity of using OK for the uptake of DC and CP from water or leachate, a superior feature pertaining to surfactant modification

    Antimony exposure promotes bladder tumor cell growth by inhibiting PINK1-Parkin-mediated mitophagy

    No full text
    Antimony is one of the heavier pnictogens and is widely found in human food chains, water sources, and as an air pollutant. Recent years have seen steadily increasing concentrations of antimony in the ecological environment; critically, several studies have indicated that antimony might pose a tumorigenic risk factor in several cancers. Therefore, antimony toxicity has attracted increasing research attention, with the molecular mechanisms underlying suspected antimony-mediated tumor transformation of greatest interest. Our results showed that the serum concentration of antimony was higher in bladder tumor patients relative to levels in non-tumor patients. Moreover, that such high antimony serum concentration were closely associated with poorer outcome in bladder tumor patients. Additionally, we demonstrated that the presence of antimony promoted both in vitro and in vivo bladder tumor cell growth. Our results also indicated that low-dose antimony resulted in significantly decreased mitochondrial membrane potential, mitochondrial respiratory enzyme complex I/II/III/IV activity, ATP/ADP ratio, and ATP concentration relative to the control group. These findings suggested that antimony caused mitochondrial damage. Finally, we found that low-dose antimony(0.8uM) inhibited mitophagy by deregulating expression of PINK1, Parkin, and p(ser65)-Parkin, and activation of PINK1-Parkin pathway by CCCP could inhibit antimony-induced tumor cell growth. Collectively, this inhibited the proliferation of bladder tumor cells. Overall, our study suggested that antimony promoted bladder tumor cell growth by inhibiting PINK1-Parkin-mediated mitophagy. These findings highlight the therapeutic potential in targeting molecules within this antimony induced-PINK1/Parkin signaling pathway and may offer a new approach for the treatment of bladder cancer

    Non-invasively predicting differentiation of pancreatic cancer through comparative serum metabonomic profiling

    No full text
    Abstract Background The differentiation of pancreatic ductal adenocarcinoma (PDAC) could be associated with prognosis and may influence the choices of clinical management. No applicable methods could reliably predict the tumor differentiation preoperatively. Thus, the aim of this study was to compare the metabonomic profiling of pancreatic ductal adenocarcinoma with different differentiations and assess the feasibility of predicting tumor differentiations through metabonomic strategy based on nuclear magnetic resonance spectroscopy. Methods By implanting pancreatic cancer cell strains Panc-1, Bxpc-3 and SW1990 in nude mice in situ, we successfully established the orthotopic xenograft models of PDAC with different differentiations. The metabonomic profiling of serum from different PDAC was achieved and analyzed by using 1H nuclear magnetic resonance (NMR) spectroscopy combined with the multivariate statistical analysis. Then, the differential metabolites acquired were used for enrichment analysis of metabolic pathways to get a deep insight. Results An obvious metabonomic difference was demonstrated between all groups and the pattern recognition models were established successfully. The higher concentrations of amino acids, glycolytic and glutaminolytic participators in SW1990 and choline-contain metabolites in Panc-1 relative to other PDAC cells were demonstrated, which may be served as potential indicators for tumor differentiation. The metabolic pathways and differential metabolites identified in current study may be associated with specific pathways such as serine-glycine-one-carbon and glutaminolytic pathways, which can regulate tumorous proliferation and epigenetic regulation. Conclusion The NMR-based metabonomic strategy may be served as a non-invasive detection method for predicting tumor differentiation preoperatively

    Biocompatible Triple-Helical Recombinant Collagen Dressings for Accelerated Wound Healing in Microneedle-Injured and Photodamaged Skin

    No full text
    Skin rejuvenation procedures such as microneedling and laser resurfacing have gained global popularity in medical cosmetology, leading to acute skin wounds with persistent pain, erythema, and edema. A variety of dressings have been explored to repair these postoperative skin injuries; however, their inadequate biocompatibility and bioactivity may raise concerns about undesirable efficacy and complications. Herein, we developed biocompatible and nonirritating triple-helical recombinant collagen (THRC) dressings for accelerated healing of microneedle-injured and photodamaged acute skin wounds. Circular dichroism (CD) measurements of THRC from various batches exhibited triple-helical structure characteristics of collagen. Cell experiments using L929 fibroblasts revealed that THRC dressings possess superior biocompatibility and bioactivity, significantly elevating the proliferation and adhesion of fibroblasts. In vivo, skin irritation tests of New Zealand rabbits demonstrated that the THRC dressings are gentle, safe, and non-irritating. Histological analysis of the animal model studies in photodamaged skin wounds using H&E and Masson’s trichrome staining revealed that 4 days of treatment with the THRC dressings effectively healed the damaged dermis by accelerating re-epithelialization and enhancing collagen deposition. In vivo studies of microneedle-injured rat defects showed that THRC dressings of varying concentrations exhibit the same rapid epithelialization rates at 48 h as commercial bovine collagen dressings. The highly biocompatible and bioactive recombinant collagen dressings may provide an advanced treatment of acute skin wounds, indicating attractive applications in postoperative care of facial rejuvenation
    corecore