7 research outputs found

    Enhancement of Thermal and Mechanical Properties of Bismaleimide Using a Graphene Oxide Modified by Epoxy Silane

    No full text
    A thermosetting resin system, based on bismaleimide (BMI), has been developed via copolymerization of 4,4′-diaminodiphenylsulfone with a newly synthesized graphene oxide modified using epoxy silane (ES-GO). The effect of ES-GO on the thermomechanical and mechanical properties of cured modified resin was studied. To evaluate the efficiency of the modified BMI systems, the composite samples using glass fiber cloth were molded and tested. Thermogravimetric analysis indicates that the cured sample systems displays a high char yield at lower concentrations of ES-GO (≤0.5 wt.%), suggesting an improved thermal stability. Using dynamic mechanical analysis, a marked increase in glass transition temperature (Tg) with increasing ES-GO content was observed. Analysis of mechanical properties reveals a possible effect of ES-GO as a toughener. The results also showed that the addition of 0.3 wt.% ES-GO maximizes the toughness of the modified resin systems, which was further confirmed by the result of analysis of fracture surfaces. At the same time, a molded composite with ES-GO showed improved mechanical properties and retention rate at 150 °C as compared to that made with neat resin

    Interface phenomena in magnetron sputtered Cu2O/ZnO heterostructures

    Get PDF
    The interface between ZnO and Cu2O has been predicted to be a good candidate for use in thin film solar cells. However, the high predicted conversion efficiency has yet to be fully realized experimentally. To explore the underlying causes of this we investigate the interface between ZnO and Cu2O in magnetron sputtered samples. Two different sample geometries were made: In the first set thin layers of ZnO were deposited on Cu2O (type A), while in the second set the order was reversed (type B). Using x-ray photoelectron spectroscopy (XPS), an intermediate CuO layer was identified regardless of the order in which the Cu2O and ZnO layers were deposited. The presence of a CuO layer was supported by transmission electron microscopy (TEM) results. Changes in the electron hole screening conditions were observed in CuO near the interface with ZnO, manifested as changes in the relative peak-to-satellite ratio and the degree of asymmetric broadness in the Cu 2p peak. The suppression of the Cu 2p satellite characteristic of CuO may cause the CuO presence to be overlooked and cause errors in determinations of valence band offsets (VBOs). For the type A samples, we compare four different approaches to XPS-based determination of VBO and find that the most reliable results are obtained when the thin CuO layer and the altered screening conditions at the interface were taken into account. The VBOs were found to range between 2.5 eV and 2.8 eV. For the B type samples a reduction of the Cu 2p-LMM Auger parameter was found as compared to bulk Cu2O, indicative of quantum confinement in the Cu2O overlayer.acceptedVersio

    Over 20% Efficiency in Methylammonium Lead Iodide Perovskite Solar Cells with Enhanced Stability via "in Situ Solidification" of the TiO2 Compact Layer.

    Get PDF
    In methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs), the device performance is strongly influenced by the TiO2 electron transport layer (ETL). Typically, the ETL needs to simultaneously be thin and pinhole-free to have high transmittance and avoid shunting. In this work, we develop an "in situ solidification" process following spin coating in which the titanium-based precursor (titanium(diisopropoxide) bis(2,4-pentanedionate)) is dried under vacuum to rapidly achieve continuous TiO2 layers. We refer to this as "gas-phase quenching". This results in thin (60 ± 10 nm), uniform, and pinhole-free TiO2 films. The PSCs based on the gas-phase quenched TiO2 exhibits improved power conversion efficiency, with a median value of 18.23% (champion value of 20.43%), compared to 9.03 and 14.09% for the untreated devices. Gas-phase quenching is further shown to be effective in enabling efficient charge transfer at the MAPbI3/TiO2 heterointerface. Furthermore, the stability of the gas-phase quenched devices is enhanced in ambient air as well as under 1 sun illumination. In addition, we achieve 12.1% efficiency in upscaled devices (1.1 cm2 active area)

    Interface phenomena in magnetron sputtered Cu2O/ZnO heterostructures

    Get PDF
    The interface between ZnO and Cu2O has been predicted to be a good candidate for use in thin film solar cells. However, the high predicted conversion efficiency has yet to be fully realized experimentally. To explore the underlying causes of this we investigate the interface between ZnO and Cu2O in magnetron sputtered samples. Two different sample geometries were made: In the first set thin layers of ZnO were deposited on Cu2O (type A), while in the second set the order was reversed (type B). Using x-ray photoelectron spectroscopy (XPS), an intermediate CuO layer was identified regardless of the order in which the Cu2O and ZnO layers were deposited. The presence of a CuO layer was supported by transmission electron microscopy (TEM) results. Changes in the electron hole screening conditions were observed in CuO near the interface with ZnO, manifested as changes in the relative peak-to-satellite ratio and the degree of asymmetric broadness in the Cu 2p peak. The suppression of the Cu 2p satellite characteristic of CuO may cause the CuO presence to be overlooked and cause errors in determinations of valence band offsets (VBOs). For the type A samples, we compare four different approaches to XPS-based determination of VBO and find that the most reliable results are obtained when the thin CuO layer and the altered screening conditions at the interface were taken into account. The VBOs were found to range between 2.5 eV and 2.8 eV. For the B type samples a reduction of the Cu 2p-LMM Auger parameter was found as compared to bulk Cu2O, indicative of quantum confinement in the Cu2O overlayer

    Experimentally validated design principles of heteroatom-doped-graphene-supported calcium single-atom materials for non-dissociative chemisorption solid-state hydrogen storage

    No full text
    Abstract Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials

    Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis

    No full text
    © 2019 Elsevier Ltd Pd- or Pt-based precious catalysts (PPC) are considered to be the best candidates toward high performance directly ethanol fuel cells (DEFC) applications, owing to their high intrinsic activity for ethanol oxidation reaction (EOR). However, the current major barrier for their commercialization is incompletely oxidized intermediates (IOI, such as CO) that poison the catalysts to affect the durability of the cells. Meanwhile, deactivated PPC catalyst is difficult to be recycled, thus impairing the economic benefits for the commercial applications. Moreover, because of the side effects of additive corrosion and aging, the carbon and organic binders widely used in current catalyst design would make the interactions of the IOI more complex to accelerate activity loss. Here, we report a Pd/amorphous SrRuO3 (Pd/a-SrRuO3) hybrid film as a promising material to overcome these problems. Perovskite SrRuO3 can effectively generate oxygen-contains (*OH, *OOH) for intermediates oxidation, providing an ideal platform to promote self-cleaning of CO on Pd activity sites. On the other hand, in analogy to typical self-adapting effect of amorphous catalyst in oxygen reduction reaction process, metastable state of amorphous SrRuO3 in this work is expected to prolong the activity adaptation region at the initial stage of cycling. Furthermore, our conceptual framework of directly depositing Pd/a-SrRuO3 film on operational electrode provides an effective solution to avoid the side effects related with carbon and binders, leading to superior reactivation phenomena with 98% efficiency. As a result, our designed Pd/a-SrRuO3 hybrid film exhibits superior EOR activity (4.0 A mg-1 Pd), durability (i-t, 60,000s), self-adapting region (exceeding 400 cycles with ending activity of 3.0 A mg-1 Pd at 1000th cycle), and also a long-term operation (CP) up to 300,000s with 10 times reactivation. This demonstration of a Pd/Pt-based hybrid catalyst with dual-capability of self-cleaning and self-adapting characteristics is an important step towards the development of highly durable EOR catalysts, with an enormous potential to promote practical application of DEFC
    corecore