549 research outputs found

    Multiscale lattice Boltzmann approach to modeling gas flows

    Get PDF
    For multiscale gas flows, kinetic-continuum hybrid method is usually used to balance the computational accuracy and efficiency. However, the kinetic-continuum coupling is not straightforward since the coupled methods are based on different theoretical frameworks. In particular, it is not easy to recover the non-equilibrium information required by the kinetic method which is lost by the continuum model at the coupling interface. Therefore, we present a multiscale lattice Boltzmann (LB) method which deploys high-order LB models in highly rarefied flow regions and low-order ones in less rarefied regions. Since this multiscale approach is based on the same theoretical framework, the coupling precess becomes simple. The non-equilibrium information will not be lost at the interface as low-order LB models can also retain this information. The simulation results confirm that the present method can achieve model accuracy with reduced computational cost

    Correlational Analysis of Sarcopenia and Multimorbidity Among Older Inpatients

    Get PDF
    BACKGROUND: Sarcopenia and multimorbidity are common in older adults, and most of the available clinical studies have focused on the relationship between specialist disorders and sarcopenia, whereas fewer studies have been conducted on the relationship between sarcopenia and multimorbidity. We therefore wished to explore the relationship between the two. METHODS: The study subjects were older patients (aged ≥ 65 years) who were hospitalized at the Department of Geriatrics of the First Affiliated Hospital of Chongqing Medical University between March 2016 and September 2021. Their medical records were collected. Based on the diagnostic criteria of the Asian Sarcopenia Working Group in 2019, the relationship between sarcopenia and multimorbidity was elucidated. RESULTS: 1.A total of 651 older patients aged 65 years and above with 2 or more chronic diseases were investigated in this study, 46.4% were suffering from sarcopenia. 2. Analysis of the relationship between the number of chronic diseases and sarcopenia yielded that the risk of sarcopenia with 4-5 chronic diseases was 1.80 times higher than the risk of 2-3 chronic diseases (OR 1.80, 95%CI 0.29-2.50), and the risk of sarcopenia with ≥ 6 chronic diseases was 5.11 times higher than the risk of 2-3 chronic diseases (OR 5.11, 95% CI 2.97-9.08), which remained statistically significant, after adjusting for relevant factors. 3. The Charlson comorbidity index was associated with skeletal muscle mass index, handgrip strength, and 6-meter walking speed, with scores reaching 5 and above suggesting the possibility of sarcopenia. 4. After adjusting for some covariates among 14 common chronic diseases in older adults, diabetes (OR 3.20, 95% CI 2.01-5.09), cerebrovascular diseases (OR 2.07, 95% CI 1.33-3.22), bone and joint diseases (OR 2.04, 95% CI 1.32-3.14), and malignant tumors (OR 2.65, 95% CI 1.17-6.55) were among those that still a risk factor for the development of sarcopenia. CONCLUSION: In the hospitalized older adults, the more chronic diseases they have, the higher the prevalence of sarcopenia. When the CCI is 5, attention needs to be paid to the occurrence of sarcopenia in hospitalized older adults

    Study of cosmogenic activation in 76^{76}Ge enriched germanium detectors during fabrication and transportation above ground

    Full text link
    Rare event search experiments using germanium detectors are operated in underground laboratories to minimize the background induced by cosmic rays. However, the cosmogenic activation in germanium crystals on the ground during fabrication and transportation generates long half-life radionuclides and contributes a considerable background. We simulated the production rates of cosmogenic radionuclides in germanium and calculated the specifi c activities of cosmogenic radionuclides according to the scheduled fabrication and transportation processes of 76^{76}Ge enriched germanium detectors. The impact of cosmogenic background in germanium crystals for the next generation CDEX experiment was assessed with the scheduled exposure history above ground

    Improving Multicast Stability in Mobile Multicast Scheme using Motion Prediction

    Get PDF
    Abstract. Stability is an important issue in multicast, especially in mobile environment where joining and leaving behaviors occur much more frequently. In this paper, we propose a scheme to improve the multicast stability by the use of motion prediction. The mobile node (MN) predicts the staying time before entering the new network, if the time is long enough, it will ask the new network to join the multicast tree as usual. Otherwise, the new network should create a tunnel to the multicast agent of MN to receive multicast packets. Considering that networks usually have different power range, the staying time is not predicted directly, and the Average Staying Time is used instead. The prediction algorithm is effective but practical which requires little calculation time and memory size. The simulation results show that the proposed scheme can improve the stability of multicast tree remarkably while bring much smaller cost

    A Learning-based Discretionary Lane-Change Decision-Making Model with Driving Style Awareness

    Full text link
    Discretionary lane change (DLC) is a basic but complex maneuver in driving, which aims at reaching a faster speed or better driving conditions, e.g., further line of sight or better ride quality. Although many DLC decision-making models have been studied in traffic engineering and autonomous driving, the impact of human factors, which is an integral part of current and future traffic flow, is largely ignored in the existing literature. In autonomous driving, the ignorance of human factors of surrounding vehicles will lead to poor interaction between the ego vehicle and the surrounding vehicles, thus, a high risk of accidents. The human factors are also a crucial part to simulate a human-like traffic flow in the traffic engineering area. In this paper, we integrate the human factors that are represented by driving styles to design a new DLC decision-making model. Specifically, our proposed model takes not only the contextual traffic information but also the driving styles of surrounding vehicles into consideration and makes lane-change/keep decisions. Moreover, the model can imitate human drivers' decision-making maneuvers to the greatest extent by learning the driving style of the ego vehicle. Our evaluation results show that the proposed model almost follows the human decision-making maneuvers, which can achieve 98.66% prediction accuracy with respect to human drivers' decisions against the ground truth. Besides, the lane-change impact analysis results demonstrate that our model even performs better than human drivers in terms of improving the safety and speed of traffic

    Competition between DNA Methylation, Nucleotide Synthesis, and Antioxidation in Cancer versus Normal Tissues

    Get PDF
    Global DNA hypomethylation occurs in many cancer types, but there is no explanation for its differential occurrence or possible impact on cancer cell physiology. Here we address these issues with a computational study of genome-scale DNA methylation in 16 cancer types. Specifically, we identified (i) a possible determinant for global DNA methylation in cancer cells and (ii) a relationship between levels of DNA methylation, nucleotide synthesis, and intracellular oxidative stress in cells. We developed a system of kinetic equations to capture the metabolic relations among DNA methylation, nucleotide synthesis, and antioxidative stress response, including their competitions for methyl and sulfur groups, based on known information about one-carbon metabolism and trans-sulfuration pathways. We observed a kinetic-based regulatory mechanism that controls reaction rates of the three competing processes when their shared resources are limited, particularly when the nucleotide synthesis rates or oxidative states are high. The combination of this regulatory mechanism and the need for rapid nucleotide synthesis, as well as high production of glutathione dictated by cancer-driving forces, led to the nearly universal observations of reduced global DNA methylation in cancer. Our model provides a natural explanation for differential global DNA methylation levels across cancer types and supports the observation that more malignant cancers tend to exhibit reduced DNA methylation levels. Insights obtained from this work provide useful information about the complexities of cancer due to interplays among competing, dynamic biological processes

    Study on cosmogenic activation in copper for rare event search experiments

    Full text link
    The rare event search experiments using germanium detectors are performed in the underground laboratories to prevent cosmic rays. However, the cosmogenic activation of the cupreous detector components on the ground will generate long half-life radioisotopes and contribute continually to the expected background level. We present a study on the cosmogenic activation of copper after 504 days of exposure at an altitude of 2469.4 m outside the China Jinping Underground Laboratory (CJPL). The specific activities of the cosmogenic nuclides produced in the copper bricks were measured using a low background germanium gamma-ray spectrometer at CJPL. The production rates at sea level, in units of nuclei/kg/day, are 18.6 \pm 2.0 for Mn-54, 9.9 \pm 1.3 for Co-56, 48.3 \pm 5.5 for Co-57, 51.8 \pm 2.5 for Co-58 and 39.7 \pm 5.7 for Co-60, respectively. Given the expected exposure history of the germanium detectors, a Monte Carlo simulation is conducted to assess the cosmogenic background contributions of the detectors' cupreous components.Comment: 6 pages, 4 figure
    • …
    corecore