46 research outputs found

    Multi-omics analysis and validation of the tumor microenvironment of hepatocellular carcinoma under RNA modification patterns

    Get PDF
    Background: Multiple types of RNA modifications are associated with the prognosis of hepatocellular carcinoma (HCC) patients. However, the overall mediating effect of RNA modifications on the tumor microenvironment (TME) and the prognosis of patients with HCC is unclear. Methods: Thoroughly analyze the TME, biological processes, immune infiltration and patient prognosis based on RNA modification patterns and gene patterns. Construct a prognostic model (RNA modification score, RNAM-S) to predict the overall survival (OS) in HCC patients. Analyze the immune status, cancer stem cell (CSC), mutations and drug sensitivity of HCC patients in both the high and low RNAM-S groups. Verify the expression levels of the four characteristic genes of the prognostic RNAM-S using in vitro cell experiments. Results: Two modification patterns and two gene patterns were identified in this study. Both the high-expression modification pattern and the gene pattern exhibited worse OS. A prognostic RNAM-S model was constructed based on four featured genes (KIF20A, NR1I2, NR2F1 and PLOD2). Cellular experiments suggested significant dysregulation of the expression levels of these four genes. In addition, validation of the RNAM-S model using each data set showed good predictive performance of the model. The two groups of HCC patients (high and low RNAM-S groups) exhibited significant differences in immune status, CSC, mutation and drug sensitivity. Conclusion: The findings of the study demonstrate the clinical value of RNA modifications, which provide new insights into the individualized treatment for patients with HCC

    Cost-Benefit Models on Integrating Information Technology Services in Automotive Production Management

    No full text
    The integration of the new-generation information technology and the automobile manufacturing industry has significantly improved the production efficiency of the automobile manufacturing industry, but it will also increase the technology application cost of the automobile manufacturing industry. The boundary value of the income change of the automobile manufacturing industry can be obtained by examining the influence of new-generation information technology on the price of parts, the price of automobiles, and the quantity of production in the upstream and downstream of the automobile manufacturing industry chain. The study found that the benefit of the automobile manufacturing industry that meets the conditions of technology application costs has increased. The value added to the downstream enterprises in the industrial chain is greater than the value added to the upstream companies. The lower the cost of technology application, the greater the impact on the number of automobile production. In the end, an example is used to verify the reliability of the research results

    Fast Digital Orthophoto Generation: A Comparative Study of Explicit and Implicit Methods

    No full text
    A digital orthophoto is an image with geometric accuracy and no distortion. It is acquired through a top view of the scene and finds widespread applications in map creation, planning, and related fields. This paper classifies the algorithms for digital orthophoto generation into two groups: explicit methods and implicit methods. Explicit methods rely on traditional geometric methods, obtaining geometric structure presented with explicit parameters with Multi-View Stereo (MVS) theories, as seen in our proposed Top view constrained Dense Matching (TDM). Implicit methods rely on neural rendering, obtaining implicit neural representation of scenes through the training of neural networks, as exemplified by Neural Radiance Fields (NeRFs). Both of them obtain digital orthophotos via rendering from a top-view perspective. In addition, this paper conducts an in-depth comparative study between explicit and implicit methods. The experiments demonstrate that both algorithms meet the measurement accuracy requirements and exhibit a similar level of quality in terms of generated results. Importantly, the explicit method shows a significant advantage in terms of efficiency, with a time consumption reduction of two orders of magnitude under our latest Compute Unified Device Architecture (CUDA) version TDM algorithm. Although explicit and implicit methods differ significantly in their representation forms, they share commonalities in the implementation across algorithmic stages. These findings highlight the potential advantages of explicit methods in orthophoto generation while also providing beneficial references and practical guidance for fast digital orthophoto generation using implicit methods

    An integrative analysis reveals the prognostic value and potential functions of MTMR2 in hepatocellular carcinoma

    No full text
    Abstract Abnormal expression of myotubularin-related protein 2 (MTMR2) has been identified in certain types of cancer, leading to varying effects on tumor genesis and progression. However, the various biological significances of MTMR2 in hepatocellular carcinoma (HCC) have not been systematically and comprehensively studied. The aim of this study was to explore the role of MTMR2 in HCC. We obtained the raw data from Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Afterward, we analyzed the data using R and cBioPortal. We investigated the connection between MTMR2 and its expression, prognosis, clinical significance, methylation, genetic alterations, tumor microenvironment (TME), tumor mutation burden (TMB), and drug reactivity in HCC patients. MTMR2 expression levels in HCC cells were validated through western blotting and RT-qPCR. MTMR2 exhibits high levels of expression across a wide range of cancer types, including HCC. MTMR2 is diagnostically valuable in detecting HCC, with its up-regulated expression often being indicative of poor prognosis among HCC patients. The in vitro experiments confirmed elevated MTMR2 expression in HepG2, HUH-7, and MHCC-97H cells. Univariate and multivariate Cox analysis demonstrated that MTMR2 was an independent prognostic factor in HCC patients. The cg20195272 site has the highest degree of methylation in MTMR2, and it is positively correlated with MTMR2 expression. Patients with high levels of methylation at the cg20195272 site show poor prognosis. Analysis of the TME indicates that high expression of MTMR2 is associated with elevated ESTIMATE score and that MTMR2 expression correlates positively with infiltration by resting memory CD4 T cells, activated dendritic cells, as well as several immune checkpoints. There is a negative correlation between MTMR2 expression and TMB, and drug sensitivity analyses have shown that higher MTMR2 expression is associated with lower IC50 values. This study indicates that increased expression of MTMR2 may play a crucial role in the occurrence, progression, diagnosis, prognostic prediction and drug therapy of HCC

    Effects of wall wettability on vortex flows induced by collapses of cavitation bubbles: A numerical study

    No full text
    The collapse of a cavitation bubble near a rigid wall induces a vortex flow that spreads along the wall with a high shear rate, and an important factor affecting the behavior of the bubble dictated by its contact lines is the wettability of the wall. However, the mechanism for the dynamics of the vortex flow and wall shear stress remains to be settled. A numerical study conducted using the multiphase compressible InterFoam solver in the OpenFOAM framework is reported here. The wall wettability is modeled by the contact angle b and slip velocity uslip, and the results show that compared with a neutral surface, superhydrophobic and hydrophilic surfaces broaden the wall-vortex regimes. The main area of shear stress is enlarged both spatially and temporally in the case of a superhydrophobic surface, while it is extended spatially and shortened temporally for a hydrophilic surface. The wall-vortex flow produces a long-term wall shear stress with high magnitude, the maximum value of which is 174.41 kPa for the superhydrophobic surface, 131.82 kPa for the hydrophilic surface, and 103.12 kPa for the neutral surface. Integrating the shear stress over time and space shows that the slip velocity uslip is mainly responsible for affecting the distribution of the shear stress in the vortex flow induced by the collapse of a cavitation bubble. The present findings provide a good guide for ultrasonic cleaning in engineering applications

    Effects of quenching and tempering heat treatment on microstructure, mechanical properties, and fatigue crack growth behavior of 51CrV4 spring steel

    No full text
    Herein, the microstructure, mechanical properties, and fatigue crack growth (FCG) behavior of 51CrV4 spring steels under different quenching and tempering heat treatment were studied. Results show that tempering temperature would not affect the prior austenite grain (PAG) size, while quenching temperature has a great influence on it; the volume fraction of carbide precipitates decreased with increasing quenching temperature. The width of martensite lath has little relationship with the prior austenite grain size. The mechanical properties of the investigated steels decreased with an increasing tempering temperature. Tempering temperature had a greater influence on the fatigue crack growth behavior compared with quenching temperature. The FCG of all the investigated steels were well interpreted by Paris model. When the quenching temperature was 840 °C, the stable expanding stage of the fatigue fracture was representative fatigue striations, fatigue steps and secondary cracks; multiple failure mechanisms coexisted in the rapid expanding stage; the fracture morphology of unstable failure stage was mainly dimples. When the quenching temperature increased to 880 °C and 920 °C, quasi-cleavage was observed in all the stages compared with the samples quenched at 840 °C. Secondary cracks, fatigue steps and crack closure could retard the FCG rate by consuming the driving force near the tip of fatigue crack

    An Input-Series-Output-Parallel Cascaded Converter System Applied to DC Microgrids

    No full text
    Direct current transformer (DCT) is a key piece of equipment in direct current (DC) microgrids, and the mainstream topologies mainly include LLC resonant converter (LLC) and dual active bridge (DAB). In this paper, a novel bi-directional buck/boost + CLLLC cascade topology is proposed for the input-series-output-parallel cascade converter system of a DC microgrid. To solve the problem that frequency variation causes the converter to deviate from the optimal operating point, resulting in low efficiency, and the inability to achieve a soft switching function. The CLLLC converter operates near the resonant frequency point as a DCT, only providing electrical isolation and voltage matching, while the buck/boost converter controls the output voltage and the voltage and current sharing of each module. Compared to other cascaded converter systems, the cascaded converter proposed in this paper has high efficiency, simplifies the parameter design, and is suitable for wide input and wide output operating conditions. The system adopts a three-loop control strategy, establishes the small-signal modeling of the system, and its stability is verified by theoretical analysis and simulation. The simulation and experimental results verify the correctness of the proposed cascaded converter based on buck/boost + CLLLC and the effectiveness of the control strategy

    Mathematical modelling for coal fired supercritical power plants and model parameter identification using genetic algorithms

    No full text
    The paper presents the progress of our study of the whole process mathematical model for a supercritical coal-fired power plant. The modelling procedure is rooted from thermodynamic and engineering principles with reference to the previously published literatures. Model unknown parameters are identified using Genetic Algorithms (GAs) with 600MW supercritical power plant on-site measurement data. The identified parameters are verified with different sets of measured plant data. Although some assumptions are made in the modelling process to simplify the model structure at a certain level, the supercritical coal-fired power plant model reported in the paper can represent the main features of the real plant once-through unit operation and the simulation results show that the main variation trends of the process have good agreement with the measured dynamic responses from the power plants

    Subacute Ruminal Acidosis as a Potential Factor that Induces Endometrium Injury in Sheep

    No full text
    The demand for economic benefits has led to an increase in the proportion of high-concentrate (HC) feed in the ruminant diet, resulting in an increased incidence of subacute ruminal acidosis (SARA). During SARA, a high concentration of lipopolysaccharide (LPS) translocated in the rumen induces a systemic inflammatory response. Inflammatory diseases, such as endometritis and mastitis, are often associated with SARA; however, in sheep, the mechanism of the effect of SARA on the endometrium has rarely been reported. Therefore, the aim of this study was to investigate, for the first time, the influence of LPS translocation on endometrial tight junctions (TJs) during SARA in sheep. The results showed that LPS and TNFα levels in the ruminal fluid, serum, and endometrial tissue supernatant during SARA increased, transcription levels of TLR4, NFκB, and TNFα in the endometrium increased, the protein expression level of claudin-1 in the endometrium increased, and the protein expression level of occludin decreased. 17β-estradiol (E2) inhibits claudin-1 protein expression and promotes occludin expression, and progesterone (P4) promotes claudin-1 protein expression and inhibits occludin protein expression. E2 and P4 regulate claudin-1 and occludin protein expression through their receptor pathways. Here, we found that LPS hindered the regulatory effect of E2 and P4 on endometrial TJs by inhibiting their receptor expression. The results of this study indicate that HC feeding can cause SARA-induced LPS translocation in sheep, increase susceptibility to systemic inflammation, induce the endometrial inflammatory response, and cause endometrial epithelial TJ damage directly and/or by obstructing E2 and P4 function. LPS translocation caused by SARA has also been suggested to induce an endometrial inflammatory response, resulting in endometrial epithelial barrier damage and physiological dysfunction, which seriously affects ruminant production. Therefore, this study provides new evidence that SARA is a potential factor that induces systemic inflammation in ruminants. It provides theoretical support for research on the prevention of endometritis in ruminants
    corecore