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1 Introduction
Consider the prescribed mean curvature Rayleigh equation

(
x′

√
 + x′

)′
+ f

(
t,x′(t)

)
+ g

(
t,x

(
t – τ (t)

))
= e(t), (.)

where τ , e ∈ C(R,R) are T-periodic, and f , g ∈ C(R × R,R) are T-periodic in the first
argument, T >  is a constant.
In recent years, there are many results on the existence of periodic solutions for vari-

ous types of delay differential equation with deviating arguments, especially for the Lié-
nard equation and Rayleigh equation (see [–]). Now as the prescribed mean curvature
( x′(t)√

+x′(t)
)′ of a function x(t) frequently appears in different geometry and physics (see [–

]), it is interesting to try to consider the existence of periodic solutions of prescribed
mean curvature equations. However, to our best knowledge, the studies of delay equa-
tions with prescribed mean curvature is relatively infrequent. The main difficulty lies in
the nonlinear term ( x′(t)√

+x′(t) )
′, the existence of which obstructs the usual method of find-

ing a priori bounds for delay Liénard or Rayleigh equations from working. In [], Feng
discussed a delay prescribed mean curvature Liénard equation of the form

(
x′

√
 + x′

)′
+ f

(
x(t)

)
x′(t) + g

(
t,x

(
t – τ (t)

))
= e(t), (.)

estimated a priori bounds by eliminating the nonlinear term ( x′(t)√
+x′(t)

)′, and established

sufficient conditions on the existence of periodic solutions for (.) by using Mawhin’s
continuation theorem.
The conditions imposed on f (x) and g(t,x) in [] were such as:
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(C) There exists γ >  satisfies |f (x)| ≥ γ .
(C) There exists l >  such that |g(t,x) – g(t,x)| ≤ l|x – x|, ∀t ∈R, x,x ∈R.

It is not difficult to see that the condition (C) is strong. It is natural to relax the con-
ditions (C) and (C). Our purpose is studying the more general equation (.) under the
more weaker conditions.
The rest of the paper is organized as follows. In Section , we shall state and prove some

basic lemmas. In Section , we shall prove the main result. An example will be given to
show the applications of our main result in the final section.

2 Preliminaries
In this section, we first recall Mawhin’s continuation theorem, which our study is based
upon.
Let X and Y be real Banach spaces and L : X ⊃DomL → Y be a linear operator. L is said

to be a Fredholm operator with index zero provided that
(i) ImL is closed subset of Y ,
(ii) dimkerL = codim ImL < +∞.
Set X = kerL⊕X, Y = ImL⊕Y. Let P : X → kerL andQ : Y → Y be the nature projec-

tions. It is easy to see that kerL ∩ (DomL ∩ X) = . Thus, the restriction Lp := L|DomL∩X
is invertible. We denote by k the inverse of Lp.
Let � be a open bounded subset of X with DomL ∩ � = φ. A map N : � → Y is said to

be L-compact in � if QN :� → Y and k(I –Q)N :� → X are compact.
The following lemma due to Mawhin [] is fundamental to prove our main result.

Lemma . Let L be a Fredholm operator of index zero and Let N be L-compact on �. If
the following conditions hold:

(h) Lx = λNx, ∀(x,λ) ∈ [(D(L) \KerL)∩ ∂�]× (, );
(h) Nx /∈ ImL, ∀x ∈KerL∩ ∂�;
(h) deg(JQN |KerL,� ∩KerL, ) = .

Then Lx =Nx has at least one solution in D(L)∩ �.

The following lemmas is useful in the proof of our main result.

Lemma . ([]) Let s ∈ C(R,R) with s(t) ∈ [,T], ∀t ∈ R. Suppose p ∈ (, +∞), α =
maxt∈[,T] s(t) and u ∈ C(R,R) with u(t +ω) = u(t). Then

∫ T



∣∣u(t) – u
(
t – s(t)

)∣∣p dt ≤ αp
∫ T



∣∣u′(t)
∣∣p dt.

Lemma . ([]) If x ∈ C
T (R,R) and

∫ T
 x(t)dt = , then

∫ T



∣∣x(t)∣∣ dt ≤ (
T/π)∫ T



∣∣x′(t)
∣∣ dt

(Wirtinger inequality) and

|x|∞ ≤ (T/)
∫ T



∣∣x′(t)
∣∣ dt

(Sobolev inequality).
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Lemma . ([]) Suppose x(t) ∈ C[,T], and x() = x(T) = . Then

∫ T



∣∣x(t)∣∣ dt ≤ T

π

∫ T



∣∣x′(t)
∣∣ dt.

Lemma . Assume that x(t) ∈ C[,T], and x() = x(T) = . Then

∣∣x(t)∣∣ ≤ 

√
T

(∫ T



∣∣x′(t)
∣∣ dt

)

, ∀t ∈ [,T].

Proof It is easy to see that

∣∣x(t)∣∣ =
∣∣∣∣x() +

∫ t


x′(s)ds

∣∣∣∣ ≤
∫ t



∣∣x′(s)
∣∣ds, ∀t ∈ [,T],

and

∣∣x(t)∣∣ =
∣∣∣∣x(T) –

∫ T

t
x′(s)ds

∣∣∣∣ ≤
∫ T

t

∣∣x′(s)
∣∣ds, ∀t ∈ [,T].

Combining the above inequalities and using Hölder’s inequality,

∣∣x(t)∣∣ ≤ 


∫ T



∣∣x′(s)
∣∣ds≤ 


√
T

(∫ T



∣∣x′(t)
∣∣ dt

)

, ∀t ∈ [,T].

The proof is completed. �

In order to apply Mawhin’s continuation theorem to study the existence of T-periodic
solution of Equation (.), we rewrite (.) as

⎧⎪⎨
⎪⎩
x′(t) = y(t)√

–y(t)
,

y′(t) = –f (t, y(t)√
–y(t)

) – g(t,x(t – τ (t))) + e(t).
(.)

Obviously, if z(t) = (x(t), y(t))� is a T-periodic solution of (.), then x(t) must be a T-
periodic solution of (.). Hence, the problem of finding a T-periodic solution of (.) re-
duces to finding one of (.).
Now, we set

X = Y =
{
z : z(t) =

(
x(t), y(t)

)� ∈ C
(
R

,R), z(t) = z(t + T)
}
,

with the norm ‖z‖ =max{‖x‖∞,‖y‖∞}, where

‖x‖∞ = max
t∈[,T]

∣∣x(t)∣∣, ‖y‖∞ = max
t∈[,T]

∣∣y(t)∣∣.

Clearly, X and Y are Banach spaces. Meanwhile, let

L : X ⊃DomL → Y , Lz = z′ =
(
x′(t), y′(t)

)�,
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where

DomL =
{
z : z =

(
x(t), y(t)

)� ∈ C(
R,R), z(t) = z(t + T)

}
.

Define a nonlinear operator N : X → Y by

Nz =

⎛
⎝

y(t)√
–y(t)

–f (t, y(t)√
–y(t)

) – g(t,x(t – τ (t))) + e(t)

⎞
⎠ .

Then the problem (.) can be written to Lz =Nz.
It is easy to see that kerL = R

 and ImL = {u ∈ Y :
∫ T
 u(s)ds = }. So, L is a Fredholm

operator with index zero.
Let P : X → kerL and Q : Y → ImQ be defined by

Pz =

T

∫ T


z(s)ds, Qu =


T

∫ T


u(s)ds,

and denote by k the inverse of L|kerP∩DomL. Then kerL = ImQ =R
 and

ku(t) =
∫ T


G(t, s)u(s)ds, (.)

where

G(t, s) =

⎧⎨
⎩

s
T ,  ≤ s < t ≤ T ,
s–T
T ,  ≤ t ≤ s ≤ T .

It follows from (.) that N is L-compact on �, where � is an open, bounded subset of X.

3 Main results
In this section, we will state and prove our main results.
We first give the following assumptions:
(H) f (t, ) = , and xf (t,x)≥  (or xf (t,x)≤ ), ∀t ∈ R.
(H) xg(t,x)≥  (or xg(t,x)≤ ), ∀t ∈R, and |g(t,x)| > ‖e‖∞ for |x| > d.
(H) There exists r, r, r >  such that

r ≤ lim inf|x|→∞
|f (t,x)|

|x| ≤ lim sup
|x|→∞

|f (t,x)|
|x| ≤ r, uniformly in t ∈ R,

and

lim sup
|x|→∞

|g(t,x)|
|x| ≤ r, uniformly in t ∈R.

(H) There exists an integerm such that  ≤ τ (t) –mT ≤ T , and
α := ‖τ (t) –mT‖∞ ≤ T .

http://www.advancesindifferenceequations.com/content/2013/1/88
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Theorem . Assume (H)-(H) hold. Then Equation (.) has at least one T-periodic
solution provided

r
r

<max

{

T
,


α + T

π

}
. (.)

Proof Consider the operator equation

Lz = λNz, ∀λ ∈ (, ). (.)

Let � = {z ∈ X : Lz = λNz,λ ∈ (, )}. If z(t) = (x(t), y(t))� ∈ �, we have

⎧⎪⎨
⎪⎩
x′(t) = λ

y(t)√
–y(t)

,

y′(t) = –λf (t, y(t)√
–y(t)

) – λg(t,x(t – τ (t))) + λe(t),
(.)

It follows from the first equation of (.) that

y(t) =

λ
x′(t)√

 + 
λ
x′(t)

.

Then (.) can be written to

( 
λ
x′(t)√

 + 
λ
x′(t)

)′
= –λf

(
t,

λ
x′(t)

)
– λg

(
t,x

(
t – τ (t)

))
+ λe(t). (.)

Integrating the first equation of (.) from  to T , we have

∫ T



y(t)√
 – y(t)

dt = .

Then there exist t, t ∈ [,T], such that

y(t) ≥ , y(t) ≤ .

Assume that t, t ∈ [,T] are the maximum and minimum points, respectively. Then

y(t) ≥ , y′(t) = , (.)

and

y(t) ≤ , y′(t) = . (.)

It follows from the second equation of (.) that

 = y′(t) = –λf
(
t,

y(t)√
 – y(t)

)
– λg

(
t,x

(
t – τ (t)

))
+ λe(t).
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From (H) and (H), without loss of generality, we can assume that xf (t,x) ≥  and
xg(t,x)≥ , ∀x ∈R. Then

g
(
t,x

(
t – τ (t)

)) ≤ e(t) ≤ ‖e‖∞.

If x(t – τ (t)) > d, then g(t,x(t – τ (t))) > ‖e‖∞, which is a contradiction. It follows that

x
(
t – τ (t)

) ≤ d. (.)

Similarly, from (.), we have

x
(
t – τ (t)

) ≥ –d. (.)

Combining the above, we know that there exists a point ξ ∈ [,T] such that

∣∣x(ξ – τ (ξ )
)∣∣ ≤ d.

Note that there exist k ∈ Z and t* ∈ [,T] such that ξ – τ (ξ ) = kT + t*. Then we get

∣∣x(t*)∣∣ ≤ d.

By Lemma ., we obtain

∣∣x(t)∣∣ ≤ ∣∣x(t*)∣∣ + ∣∣x(t) – x
(
t*

)∣∣

≤ ∣∣x(t*)∣∣ + 

√
T

(∫ T*+T

t*

∣∣x′(t)
∣∣ dt

) 


= d +


√
T

∥∥x′∥∥
.

Hence,

‖x‖∞ ≤ d +


√
T

∥∥x′∥∥
. (.)

Meanwhile, by Lemma ., we have

‖x‖ =
(∫ T



∣∣x(t)∣∣ dt
) 



=
(∫ T



∣∣x(t + t*
)∣∣ dt

) 


=
(∫ T



∣∣x(t + t*
)
– x

(
t*

)
+ x

(
t*

)∣∣ dt
) 



≤
(∫ T



(∣∣x(t + t*
)
– x

(
t*

)∣∣ + d
) dt

) 


=
(∫ T



(∣∣x(t + t*
)
– x

(
t*

)∣∣ + d
∣∣x(t + t*

)
– x

(
t*

)∣∣ + d)dt
) 
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≤
(
T

π

∫ T



∣∣x′(t)
∣∣ dt + d

√
T
T
π

(∫ T



∣∣x′(t)
∣∣ dt

) 

+ dT

) 


=
T
π

∥∥x′∥∥
 + d

√
T . (.)

From (.), we have T
 r < r, or r(α + T

π
) < r. Then there exists ε >  such that

T

(r + ε) < r – ε, (.)

or

(r + ε)
(

α +
T
π

)
< (r – ε). (.)

For such a ε > , it follows from (H), there exist h,h ≥  such that

(r – ε)|x| – h ≤ ∣∣f (t,x)∣∣ ≤ (r + ε)|x| + h, ∀t,x ∈ R, (.)

and

∣∣g(t,x)∣∣ ≤ (r + ε)|x| + h, ∀t,x ∈R. (.)

Multiplying x′(t) and (.) and integrating from  to T , we get

λ

∫ T


f
(
t,

λ
x′(t)

)
x′(t)dt + λ

∫ T


g
(
t,x

(
t – τ (t)

))
x′(t)dt = λ

∫ T


e(t)x′(t)dt. (.)

It follows from (H) and (.) that

∣∣∣∣λ
∫ T


f
(
t,

λ
x′(t)

)
x′(t)dt

∣∣∣∣ = λ

∫ T



∣∣∣∣f
(
t,

λ
x′(t)

)
x′(t)

∣∣∣∣dt

≥ (r – ε)
∫ T



∣∣x′(t)
∣∣ dt – λ

∫ T


h

∣∣x′(t)
∣∣dt. (.)

Substituting (.) into (.) and from (.), we have

(r – ε)
∫ T



∣∣x′(t)
∣∣ dt

≤ λ

∣∣∣∣
∫ T


g
(
t,x

(
t – τ (t)

))
x′(t)dt

∣∣∣∣ + λ

∣∣∣∣
∫ T


e(t)x′(t)dt

∣∣∣∣
+ λ

∣∣∣∣
∫ T


hx′(t)dt

∣∣∣∣
≤

∫ T



∣∣g(t,x(t – τ (t)
))∣∣∣∣x′(t)

∣∣dt + (‖e‖∞ + h
)∫ T



∣∣x′(t)
∣∣dt

≤ (r + ε)
∫ T



∣∣x(t – τ (t)
)∣∣∣∣x′(t)

∣∣dt + (‖e‖∞ + h + h
)∫ T



∣∣x′(t)
∣∣dt. (.)

http://www.advancesindifferenceequations.com/content/2013/1/88
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Case . (.) holds. It follows from (.) and Hölder inequality that

(r – ε)
∥∥x′∥∥

 ≤ (r + ε)‖x‖∞
√
T

∥∥x′∥∥
 +

(‖e‖∞ + h + h
)√

T
∥∥x′∥∥



≤ (r + ε)
(


√
T

∥∥x′∥∥
 + d

)√
T

∥∥x′∥∥
 +

(‖e‖∞ + h + h
)√

T
∥∥x′∥∥



= (r + ε)
T


∥∥x′∥∥
 +

(
(r + ε)d + ‖e‖∞ + h + h

)√
T

∥∥x′∥∥
.

From (.) and (.), we obtain that there exists a positive constantM such that

∥∥x′∥∥
 ≤ M, and ‖x‖∞ ≤ M.

Case . (.) holds. It follows from (.), Lemma . and Hölder inequality that

(r – ε)
∥∥x′∥∥

 ≤ (r + ε)
∫ T



∣∣x(t) – x
(
t – τ (t)

)∣∣∣∣x′(t)
∣∣dt + (r + ε)

∫ T



∣∣x(t)∣∣∣∣x′(t)
∣∣dt

+
(‖e‖∞ + h + h

)∫ T



∣∣x′(t)
∣∣dt

≤ (r + ε)
(∫ T



∣∣x(t) – x
(
t – τ (t)

)∣∣ dt
) 


(∫ T



∣∣x′(t)
∣∣ dt

) 


+ (r + ε)
(∫ T



∣∣x(t)∣∣ dt
) 


(∫ T



∣∣x′(t)
∣∣ dt

) 


+
(‖e‖∞ + h + h

)∫ T



∣∣x′(t)
∣∣dt

≤ (r + ε)
(

α
∫ T



∣∣x′(t)
∣∣ dt

) 

(∫ T



∣∣x′(t)
∣∣ dt

) 


+ (r + ε)
(
T
π

∥∥x′∥∥
 + d

√
T

)∥∥x′∥∥
 +

(‖e‖∞ + h + h
)√

T
∥∥x′∥∥



= (r + ε)
(

α +
T
π

)∥∥x′∥∥
 +

(
(r + ε)d + ‖e‖∞ + h + h

)√
T

∥∥x′∥∥
.

From (.) and (.), we know there exists a positive constantM such that

∥∥x′∥∥
 ≤ M, and ‖x‖∞ ≤ M.

Take R =max{M,M}. Then, if (.) holds, we have

∥∥x′∥∥
 ≤ R, and ‖x‖∞ ≤ R.

By the first equation of (.), we have

∫ T



y(t)√
 – y(t)

dt = .

http://www.advancesindifferenceequations.com/content/2013/1/88
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Then there exists η ∈ [,T] such that y(η) = . It implies that

y(t) =
∫ t

η

y′(s)ds + y(η) =
∫ t

η

y′(s)ds,

and

‖y‖∞ ≤
∫ T



∣∣y′(s)
∣∣ds.

From the second equation of (.), we get

∫ T



∣∣y′(s)
∣∣ds ≤ λ

∫ T



∣∣∣∣f
(
t,

λ
x′(t)

)∣∣∣∣dt + λ

∫ T



∣∣g(t,x(t – τ (t)
))∣∣dt + λ

∫ T



∣∣e(t)∣∣dt.

Noticing that ‖x‖∞ ≤ R, we have there exists k > , such that

∣∣g(t,x(t – τ (t)
))∣∣ ≤ k, ∀t ∈ [,T].

Then, from (.), we have

∫ T



∣∣y′(t)
∣∣dt ≤ (r + ε)

∫ T



∣∣x′(t)
∣∣dt + λ

∫ T


h dt + λ

∫ T


k dt + λ

∫ T



∣∣e(t)∣∣dt
≤ (r + ε)

√
T

∥∥x′∥∥
 +

(
h + k + ‖e‖∞

)
T

≤ (r + ε)
√
TR +

(
h + k + ‖e‖∞

)
T := R.

Hence, ‖y‖∞ ≤ R.
Let � = {z ∈ kerL :Nz ∈ ImL}. If z ∈ �, then z ∈ kerL and QNz = . Obviously,

∣∣x(t)∣∣ ≤ R, y(t) = ≤ R.

Set

� =
{
z = (x, y)� ∈ X : ‖x‖∞ < R + ,‖y‖∞ < R + 

}
,

then () and () of Lemma . are satisfied.
Next, we claim that () of Lemma . is also satisfied. For this, we define the isomorphism

J : ImQ → kerL by

J(x, y) = (–y,x),

and let H(ν,μ) = μν + ( –μ)JQNν , ∀(ν,μ) ∈ � × [,T].
By simple calculations, we obtain, for (z,μ) ∈ ∂(� ∩ kerL)× [, ],

z�H(z,μ) = μ
(
x + y

)
+
 –μ

T
x
∫ T



(
g
(
t,x

(
t – τ (t)

))
– e(t)

)
dt.

Obviously, it follows from (H) that z�H(z,μ) > .

http://www.advancesindifferenceequations.com/content/2013/1/88
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Then

deg(JQN ,� ∩ kerL, ) = deg
(
H(z, ),� ∩ kerL, 

)
= deg

(
H(z, ),� ∩ kerL, 

)
= deg(I,� ∩ kerL, ) = ,

which implies condition () of Lemma . is also satisfied.
Thus Lz =Nz has a solution z = (x(t), y(t))�, i.e., Equation (.) has a T-periodic solution

x(t) with ‖x‖∞ ≤ R. This completes the proof. �

Remark . If r
r
< 

T , the condition (H) can be not assumed, i.e., it follows only from
(H)-(H) that Equation (.) has a T-periodic solution.

4 An example
In this section, as applications for Theorem ., we list the following example.

Example . Consider prescribed mean curvature Rayleigh equation with a deviating ar-
gument

(
x′

√
 + x′

)′
+ f

(
t,x′(t)

)
+ g

(
t,x

(
t –



cos t

))
= cos t, (.)

where f (t,x) = ( + 
 sin

 t) x√
+x

, g(t,x) = 
 ( + sin t) x√

+x
.

Let T = π . Clearly, r = , r = 
 , r =


 , α = 

 , and

r
r

=


<max

{

π

,



 +

π
π

}
=


.

From Theorem ., Equation (.) has at least one T-periodic solution.

Remark . If f (t,x) = ( + 
 sin

 t)x, g(t,x) = 
 ( + sin t)x, Equation (.) is a prescribed

mean curvature Liénard equation. By using Theorem ., it has at least one π-periodic
solution, which cannot be obtained by []. This implies that the results of this paper are
essentially new.
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