167 research outputs found

    Finite-Time Composite Position Control for a Disturbed Pneumatic Servo System

    Get PDF
    This paper investigates the finite-time position tracking control problem of pneumatic servo systems subject to hard nonlinearities and various disturbances. A finite-time disturbance observer is firstly designed, which guarantees that the disturbances can be accurately estimated in a finite time. Then, by combining disturbances compensation and state feedback controller together, a nonsmooth composite controller is developed based on sliding mode control approach and homogeneous theory. It is proved that the tracking errors under the proposed composite control approach can be stabilized to zero in finite time. Moreover, compared with pure state feedback control, the proposed composite control scheme offers a faster convergence rate and a better disturbance rejection property. Finally, numerical simulations illustrate the effectiveness of the proposed control scheme

    FabricFolding: Learning Efficient Fabric Folding without Expert Demonstrations

    Full text link
    Autonomous fabric manipulation is a challenging task due to complex dynamics and potential self-occlusion during fabric handling. An intuitive method of fabric folding manipulation first involves obtaining a smooth and unfolded fabric configuration before the folding process begins. However, the combination of quasi-static actions such as pick & place and dynamic action like fling proves inadequate in effectively unfolding long-sleeved T-shirts with sleeves mostly tucked inside the garment. To address this limitation, this paper introduces an improved quasi-static action called pick & drag, specifically designed to handle this type of fabric configuration. Additionally, an efficient dual-arm manipulation system is designed in this paper, which combines quasi-static (including pick & place and pick & drag) and dynamic fling actions to flexibly manipulate fabrics into unfolded and smooth configurations. Subsequently, keypoints of the fabric are detected, enabling autonomous folding. To address the scarcity of publicly available keypoint detection datasets for real fabric, we gathered images of various fabric configurations and types in real scenes to create a comprehensive keypoint dataset for fabric folding. This dataset aims to enhance the success rate of keypoint detection. Moreover, we evaluate the effectiveness of our proposed system in real-world settings, where it consistently and reliably unfolds and folds various types of fabrics, including challenging situations such as long-sleeved T-shirts with most parts of sleeves tucked inside the garment. Specifically, our method achieves a coverage rate of 0.822 and a success rate of 0.88 for long-sleeved T-shirts folding

    Indoor Exploration and Simultaneous Trolley Collection Through Task-Oriented Environment Partitioning

    Full text link
    In this paper, we present a simultaneous exploration and object search framework for the application of autonomous trolley collection. For environment representation, a task-oriented environment partitioning algorithm is presented to extract diverse information for each sub-task. First, LiDAR data is classified as potential objects, walls, and obstacles after outlier removal. Segmented point clouds are then transformed into a hybrid map with the following functional components: object proposals to avoid missing trolleys during exploration; room layouts for semantic space segmentation; and polygonal obstacles containing geometry information for efficient motion planning. For exploration and simultaneous trolley collection, we propose an efficient exploration-based object search method. First, a traveling salesman problem with precedence constraints (TSP-PC) is formulated by grouping frontiers and object proposals. The next target is selected by prioritizing object search while avoiding excessive robot backtracking. Then, feasible trajectories with adequate obstacle clearance are generated by topological graph search. We validate the proposed framework through simulations and demonstrate the system with real-world autonomous trolley collection tasks

    Multi-Risk-RRT: An Efficient Motion Planning Algorithm for Robotic Autonomous Luggage Trolley Collection at Airports

    Full text link
    Robots have become increasingly prevalent in dynamic and crowded environments such as airports and shopping malls. In these scenarios, the critical challenges for robot navigation are reliability and timely arrival at predetermined destinations. While existing risk-based motion planning algorithms effectively reduce collision risks with static and dynamic obstacles, there is still a need for significant performance improvements. Specifically, the dynamic environments demand more rapid responses and robust planning. To address this gap, we introduce a novel risk-based multi-directional sampling algorithm, Multi-directional Risk-based Rapidly-exploring Random Tree (Multi-Risk-RRT). Unlike traditional algorithms that solely rely on a rooted tree or double trees for state space exploration, our approach incorporates multiple sub-trees. Each sub-tree independently explores its surrounding environment. At the same time, the primary rooted tree collects the heuristic information from these sub-trees, facilitating rapid progress toward the goal state. Our evaluations, including simulation and real-world environmental studies, demonstrate that Multi-Risk-RRT outperforms existing unidirectional and bi-directional risk-based algorithms in planning efficiency and robustness

    Intensive glucose control for critically ill patients: an updated meta-analysis

    Get PDF
    This meta-analysis aims to update the evidence for the effects of intensive glucose control (IGC) on the outcomes among critically ill patients. We performed a systematic literature review from inception through December, 2017 by two independent authors by searching PubMed, EMBASE and Cochrane Library. Randomized clinical trials of the effects of IGC compared with conventional glucose control were selected. Random-effect models were applied to calculate summary relative risks (RRs) for the related outcomes. Of 4247 records identified, we abstracted data from 27 relevant trials for meta-analysis. Compared with patients receiving conventional glucose control (controls), patients with IGC did not have significantly decreased risk of short-term mortality (in-hospital mortality or intensive care unit (ICU) mortality) (RR 0.99, 95% CI 0.92–1.06) or 3- to 6-month mortality (RR 1.02, 95% CI 0.97–1.08). These results remained constant among different study settings including surgical ICUs, medical ICUs or mixed ICUs. Similarly, we also found that patients with IGC did not have significantly lower risk of sepsis (RR 1.00, 95% CI 0.89–1.11) or new need for dialysis (RR 0.97, 95% CI 0.84–1.11). However, patients with IGC had almost 4-fold increase in risk of hypoglycemia (RR 4.86, 95% CI 3.16–7.46). In conclusion, in this updated meta-analysis of published trials, critically ill patients receiving IGC were found to be at neutral risk for short-term or 3- 6-month mortality, risk of sepsis or new need for dialysis, but at higher risk of hypoglycemia

    Short-Term Wind Speed Forecasting via Stacked Extreme Learning Machine With Generalized Correntropy

    Get PDF
    Recently, wind speed forecasting as an effective computing technique plays an important role in advancing industry informatics, while dealing with these issues of control and operation for renewable power systems. However, it is facing some increasing difficulties to handle the large-scale dataset generated in these forecasting applications, with the purpose of ensuring stable computing performance. In response to such limitation, this paper proposes a more practical approach through the combination of extreme-learning machine (ELM) method and deep-learning model. ELM is a novel computing paradigm that enables the neural network (NN) based learning to be achieved with fast training speed and good generalization performance. The stacked ELM (SELM) is an advanced ELM algorithm under deep-learning framework, which works efficiently on memory consumption decrease. In this paper, an enhanced SELM is accordingly developed via replacing the Euclidean norm of the mean square error (MSE) criterion in ELM with the generalized correntropy criterion to further improve the forecasting performance. The advantage of the enhanced SELM with generalized correntropy to achieve better forecasting performance mainly relies on the following aspect. Generalized correntropy is a stable and robust nonlinear similarity measure while employing machine learning method to forecast wind speed, where the outliers may exist in some industrially measured values. Specifically, the experimental results of short-term and ultra-short-term forecasting on real wind speed data show that the proposed approach can achieve better computing performance compared with other traditional and more recent methods

    Short-Term Wind Speed Forecasting via Stacked Extreme Learning Machine With Generalized Correntropy

    Get PDF
    Recently, wind speed forecasting as an effective computing technique plays an important role in advancing industry informatics, while dealing with these issues of control and operation for renewable power systems. However, it is facing some increasing difficulties to handle the large-scale dataset generated in these forecasting applications, with the purpose of ensuring stable computing performance. In response to such limitation, this paper proposes a more practical approach through the combination of extreme-learning machine (ELM) method and deep-learning model. ELM is a novel computing paradigm that enables the neural network (NN) based learning to be achieved with fast training speed and good generalization performance. The stacked ELM (SELM) is an advanced ELM algorithm under deep-learning framework, which works efficiently on memory consumption decrease. In this paper, an enhanced SELM is accordingly developed via replacing the Euclidean norm of the mean square error (MSE) criterion in ELM with the generalized correntropy criterion to further improve the forecasting performance. The advantage of the enhanced SELM with generalized correntropy to achieve better forecasting performance mainly relies on the following aspect. Generalized correntropy is a stable and robust nonlinear similarity measure while employing machine learning method to forecast wind speed, where the outliers may exist in some industrially measured values. Specifically, the experimental results of short-term and ultra-short-term forecasting on real wind speed data show that the proposed approach can achieve better computing performance compared with other traditional and more recent methods

    A Tale of Two Cities: Data and Configuration Variances in Robust Deep Learning

    Full text link
    Deep neural networks (DNNs), are widely used in many industries such as image recognition, supply chain, medical diagnosis, and autonomous driving. However, prior work has shown the high accuracy of a DNN model does not imply high robustness (i.e., consistent performances on new and future datasets) because the input data and external environment (e.g., software and model configurations) for a deployed model are constantly changing. Hence, ensuring the robustness of deep learning is not an option but a priority to enhance business and consumer confidence. Previous studies mostly focus on the data aspect of model variance. In this article, we systematically summarize DNN robustness issues and formulate them in a holistic view through two important aspects, i.e., data and software configuration variances in DNNs. We also provide a predictive framework to generate representative variances (counterexamples) by considering both data and configurations for robust learning through the lens of search-based optimization
    • …
    corecore