101 research outputs found

    Matrix metalloproteinase proteolysis after stroke : a surrogate indicator for early diagnosis and validation of treatment

    Get PDF
    Matrix metalloproteinases (MMPs) are a family of endoproteaseses that have various functions from development to disease. They are also believed to play critical roles in the central nerve system for the pathogenesis of stroke. In ischemic stroke, MMP 9 is involved in neuronal apoptosis, edema, and hemorrhagic transformation. In stroke models, MMPs degrade ECM components and disrupt neurovascular integrity, resulting in blood-brain barrier (BBB) disruption and hemorrhage which further damage to the ischemic area. There are experimental pharmacological treatments with MMP inhibitors that decrease the extent of neuronal apoptosis and hemorrhage. Recently we tested a new class of mechanism-based MMP-9 specific inhibitors SB-3CT. Our hypothesis is that MMP-9 causes proteolytic changes resulting in neurovascular damage after focal cerebral ischemia in mice. Inhibition of MMP proteolysis with SB-3CT, should result in decreased apoptosis of neurons and improved behavioral outcomes."Supported in part by the grants of NIH/NIEHS&NCCAM, Dana Foundation, AHA to Z.G.

    Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury

    Get PDF
    Most traumatic brain injuries (TBIs) during military deployment or training are clinically “mild” and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation

    Mechanism-based Inhibitor of Matrix Metalloproteinase-9 Rescues Brain from Focal Cerebral Ischemia-induced Damage and Improve Neurological Outcomes in Mice [abstract]

    Get PDF
    Neuroscience - Vision & Functional Brain Imaging Poster SessionStroke is the third leading cause of death in the US and the primary cause of long-term disability. Acute ischemic stroke, the most common form of stroke, is caused by clotting in the cerebral arteries leading to brain oxygen deprivation and cerebral infarction. The events involved in stroke include brain cell injury or death, breakdown of the blood-brain barrier (BBB), edema, and hemorrhage, which are associated with the expression and activation of matrix metalloproteinases (MMPs), particularly MMP-9. In two focal cerebral ischemia paradigms - the filament-induced transient middle cerebral artery occlusion (MCAo) and the embolus-induced permanent MCAo in mice, we examined MMP-9 proteolysis of extracellular matrix (ECM) components and the neuroprotective effects of the highly selective mechanism-based inhibitor of MMP-9, SB-3CT, which is activated by MMP-9 under pathological conditions. We demonstrated that MMP-9 degrades the ECM protein laminin and that this degradation induces neuronal apoptosis in a transient focal cerebral ischemia model in mice. SB-3CT dramatically blocks MMP-9 activity and decreases MMP-9-mediated laminin cleavage, thus rescuing neurons from apoptosis and ameliorating neurobehavioral outcomes. Significant therapeutic activity of SB-3CT is seen up to 6 h after initial brain damage. Moreover, treatment with SB-3CT attenuates brain MMP-9 activity and protects against delayed neuronal cell death in the embolus-induced permanent MCAo in mice. We conclude that MMP-9 is a highly promising drug target and that SB-3CT has significant therapeutic potential in stroke patients

    Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (–)-epigallocatechin-3-gallate

    Get PDF
    Excessive production of Aβ (amyloid β-peptide) has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease). Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species) in neurons through an NMDA (N-methyl-d-aspartate)-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid) release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III)-tetrakis(4-benzoic acid)-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pre-treatment of neurons with EGCG [(−)-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD

    Low-Intensity Blast Induces Acute Glutamatergic Hyperexcitability in Mouse Hippocampus Leading to Long-Term Learning Deficits and Altered Expression of Proteins Involved in Synaptic Plasticity and Serine Protease Inhibitors

    Get PDF
    Neurocognitive consequences of blast-induced traumatic brain injury (bTBI) pose significant concerns for military service members and veterans with the majority of invisible injury. However, the underlying mechanism of such mild bTBI by low-intensity blast (LIB) exposure for long-term cognitive and mental deficits remains elusive. Our previous studies have shown that mice exposed to LIB result in nanoscale ultrastructural abnormalities in the absence of gross or apparent cellular damage in the brain. Here we tested the hypothesis that glutamatergic hyperexcitability may contribute to long-term learning deficits. Using brain slice electrophysiological recordings, we found an increase in averaged frequencies with a burst pattern of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 neurons in LIB-exposed mice at 1- and 7-days post injury, which was blocked by a specific NMDA receptor antagonist AP5. In addition, cognitive function assessed at 3-months post LIB exposure by automated home-cage monitoring showed deficits in dynamic patterns of discrimination learning and cognitive flexibility in LIB-exposed mice. Collected hippocampal tissue was further processed for quantitative global-proteomic analysis. Advanced data-independent acquisition for quantitative tandem mass spectrometry analysis identified altered expression of proteins involved in synaptic plasticity and serine protease inhibitors in LIB-exposed mice. Some were correlated with the ability of discrimination learning and cognitive flexibility. These findings show that acute glutamatergic hyperexcitability in the hippocampus induced by LIB may contribute to long-term cognitive dysfunction and protein alterations. Studies using this military-relevant mouse model of mild bTBI provide valuable insights into developing a potential therapeutic strategy to ameliorate hyperexcitability-modulated LIB injuries

    Proteomic analysis and biochemical correlates of mitochondrial dysfunction following low-intensity primary blast exposure

    Get PDF
    Service members during military actions or combat training are frequently exposed to primary blasts by weaponry. Most studies have investigated moderate or severe brain injuries from blasts generating overpressures over 100-kPa, while understanding the pathophysiology of low-intensity blast (LIB)-induced mild traumatic brain injury (mTBI) leading to neurological deficits remains elusive. Our recent studies, using an open-field LIB-induced mTBI mouse model with an peak overpressure at 46.6-kPa, demonstrated behavioral impairments and brain nanoscale damages, notably mitochondrial and axonal ultrastructural changes. In this study, we used tandem mass tagged (TMT) quantitative proteomics and bioinformatics analysis to seek insights into the molecular mechanisms underlying ultrastructural pathology. Changes in global- and phospho-proteomes were determined at 3 and 24 hours, 7 and 30 days post injury (DPI), and to investigate the biochemical and molecular correlates of mitochondrial dysfunction. Results showed striking dynamic changes in a total of 2216 global and 459 phosphorylated proteins at vary time points after blast. Disruption of key canonical pathways included evidence of mitochondrial dysfunction, oxidative stress, axonal/cytoskeletal/synaptic dysregulation, and neurodegeneration. Bioinformatic analysis identified blast induced trends in networks related to cellular growth/development/movement/assembly and cell-to-cell signaling interactions. With observations of proteomic changes, we found LIB-induced oxidative stress associated with mitochondrial dysfunction mainly at 7 and 30 DPI. These dysfunctions included impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated respiration-relevant enzyme activities. Insights on the early pahtogenesis of primary LIB-induced brain damage provide a template for further characterization of its chronic effects, identification of potential biomarkers and targets for intervention.Hailong song (1), Mei Chen (6), Chen Chen (2), Jiankun Cui (1,7), Catherine Johnson (3), Jianlin Cheng (2), Xiaowan Wang (4), Russell H. Swerdlow (4), Ralph DePalma (5), Weiming Xia (6), Zezong Gu (1,7) ; 1. Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine; 2. Department of Computer Sciences, University of Missouri; 3. Department of Mining and Nuclear Engineering, Missouri University of Science and Technology; 4. Department of Neurology, University of Kansas Medical Center; 5. Office of Research and Development, Department of Veterans Affairs; 6. Bedford VA Medical Center; 7. Truman VA Hospital Research Servic

    An Elastic Transmission Error Compensation Method for Rotary Vector Speed Reducers Based on Error Sensitivity Analysis

    No full text
    An elastic transmission error (TE) compensation method for a rotary vector (RV) speed reducer is proposed to improve its transmission accuracy based on error sensitivity analysis. Elastic and geometric TEs of the RV speed reducer can be compensated by tooth surface modification of cycloidal gears. Error coefficients of the TE of the RV speed reducer are derived to determine error factors with positive effects on TEs based on error sensitivity analysis. A total TE, including the elastic TE, is obtained by using Adams. The elastic TE compensation method is developed to calculate modification values of error factors with positive effects on the TE to decrease the elastic TE of the RV speed reducer. TE simulation results show that the elastic TE accounts for 25.28% of the total TE, and calculation results show that the maximum contact force and normal deformation of the modified prototype are obviously improved. The feasibility and accuracy of the proposed elastic TE compensation method for RV speed reducers were verified by TE experiments. TE experiment results showed that the TE of the modified RV speed reducer is 47.22% less than that of the initial RV speed reducer

    Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    No full text
    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice

    Synergistic antitumor effects of circularly permuted TRAIL with doxorubicin in triple-negative breast cancer

    No full text
    Circularly permuted TRAIL (CPT), a novel recombinant TRAIL mutant, is a potent antitumor agent. However, its efficacy in triple-negative breast cancer (TNBC) remains unclear. Treatment with CPT alone and in combination with doxorubicin (Dox) is explored for its effects on the proliferation and apoptosis of MDA-MB-231 (MB231) and MDA-MB-436 (MB436) breast cancer cells in vitro and in vivo. Here, we show that CPT combined with Dox exhibits time- and dose-dependent synergy to inhibit cell viability and enhance apoptosis of MB231 and MB436 cells. Combined treatment substantially increases caspase-8, caspase-3, and PARP cleavage in both cell lines and significantly suppresses tumor growth in nude mice bearing MB231 xenografts. Collectively, our findings demonstrate that treatment with CPT in combination with Dox exerts synergistic antitumor effects through activation of the caspase cascade pathway, a mechanism that is partly dependent on the Dox-induced upregulation of death receptor 4 and death receptor 5. Therefore, CPT combined with Dox may be a feasible therapeutic strategy for the management of TNBC
    corecore