97 research outputs found

    Design Optimization of a Disc Brake Based on a Multi-Objective Optimization Algorithm and Analytic Hierarchy Process Method

    Get PDF
    Multiple optimization objectives and the Pareto set often arise from engineering structural optimization. Normalization methods (such as the weighting method) have the disadvantage that the weighted value is not set by the decision maker but the designer and is greatly influenced by the opinion of the designer. On this basis, in this paper a non-dominated sorting genetic algorithm - analytic hierarchy process (NSGA-AHP) method is proposed for decision making and analysis of the Pareto solution set of the multiple-objective optimization in a structural optimal model. In addition, illustrated by the example of a disc brake, a multiple-objective optimization model for a disc brake has been here developed. Besides, the NSGA-AHP method is adopted for the analysis optimization. The research results show that the NSGA-AHP method can be utilized to select the Pareto solution set in an effective way and that this method is effective in solving a multiple-objective problem in the structural optimization design

    Application of nonlinear stiffness mechanism on energy harvesting from vortex-induced vibrations

    Get PDF
    This study investigates the potential of vortex-induced vibration (VIV) as a renewable energy source, achieved when fluid flow interacts with a bluff body, inducing self-sustained oscillations through vortex shedding in the wake. While VIV research has traditionally focused on understanding its mechanisms and mitigating detrimental effects, interest in VIV energy harvesting has surged as a means to convert marine hydrokinetic (MHK) energy into usable electrical power. The nonlinear effects of two linear oblique springs on VIV energy harvesting are explored using the wake oscillator model, encompassing bistable and Duffing hardening stiffness. The study examines the response and energy harvesting performance while considering the impact of undeformed spring length, structural damping, and initial conditions on VIV energy conversion. Findings show that nonlinear stiffness application in the VIV system can broaden the synchronization bandwidth or reduce the VIV initiation flow speed. Bistable stiffness may broaden the synchronization velocity range, while Duffing hardening stiffness efficiently reduces the VIV initiation speed with small energy harvesting loss. Combining both stiffness types with appropriate control strategies presents a promising approach for achieving a broad synchronization VIV bandwidth and low initiation flow speed. Key parameters, such as the nondimensional parameter defining spring system obliquity and the ratio between undeformed spring length and cylinder diameter, significantly influence VIV response and energy harvesting. Moreover, optimal structural damping is vital to maximize energy harvesting efficiency, and understanding and controlling initial conditions are crucial for optimizing VIV synchronization bandwidth and energy harvesting efficiency for both bistable and Duffing hardening stiffness. This study provides valuable insights into VIV system dynamics and energy conversion potential with nonlinear springs, offering promising avenues for enhancing energy harvesting efficiency and inspiring further applications of nonlinear effects in VIV energy converters

    IMP3 expression is associated with poor outcome and epigenetic deregulation in intrahepatic cholangiocarcinoma

    Get PDF
    IMP3 is a fetal protein not expressed in normal adult tissues. IMP3 is an oncoprotein and a useful biomarker for a variety of malignancies and is associated with reduced overall survival of a number of them. IMP3 expression and its prognostic value for patients with intrahepatic cholangiocarcinoma (ICC) have not been well investigated. The molecular mechanism underlying IMP3 expression in human cancer cells remains to be elucidated. Here we investigated IMP3 expression in ICC and adjacent nonneoplastic liver in 72 unifocal primary ICCs from a single institute by immunohistochemistry, immunoblotting, and real-time polymerase chain reaction. IMP3 was specifically expressed in cancer cells but not in the surrounding normal tissue, and 59 (82%) of 72 ICCs were IMP3 positive by immunohistochemistry. Among 35 cases with lymphovascular invasion, 26 (74%) showed IMP3 positivity in lymph node metastases. IMP3 expression was significantly correlated with tumor size, pathological grade, metastasis, and clinical stage. Kaplan-Meier analysis demonstrated an inverse correlation between IMP3 expression and overall survival rate. Multivariate analysis revealed that IMP3 was the only risk factor associated with survival. To further explore the mechanism of IMP3 expression in cancers, we identified 2 CpG islands at IMP3 proximal promoter. Interestingly, the IMP3 promoter was almost completely demethylated in ICCs in contrast to densely methylated promoter in normal liver tissues. IMP3 expression is a useful biomarker for ICCs and can provide an independent prognostic value for patients with ICC. To our knoweldge, this is the first direct evidence of epigenetic deregulation of IMP3 in human cancer. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved

    Structural brain assessment of temporal lobe epilepsy based on voxel-based and surface-based morphological features

    Get PDF
    Aim of the study. This study aimed to assess the cerebral voxel-based and surface-based morphological abnormalities of patients with temporal lobe epilepsy (TLE).Materials and methods. A total of 100 healthy adults and 73 patients with TLE were enrolled in this study, and their 3D T1-weighted MRI data were collected. Voxel-based morphology (VBM) and surface-based morphology (SBM) tools were used to compare the morphological differences between healthy adults and patients with TLE. Receiver-operating characteristic (ROC) curves were used to acquire the boundary values for detecting morphological abnormalities in regions of interest from the corrected VBM and SBM analysis.Results. Our results showed that cortical voxels and decreased thickness areas were located in the widespread cortex and subcortical structures in the TLE group. However, after completing the analysis, we found that the left-TLE lesions were limited to the left temporal pole and left hippocampus, while the right-TLE lesions were located in the bilateral medial temporal lobe, including the right hippocampus and bilateral amygdala. ROC-curve results showed that the volume of the left hippocampus at 4,124.45 mm3 and the thickness of the left temporal pole cortex at 3.50 mm could be used as optimal boundary values based on the curves of the left-TLE group. The right-TLE group curves were poor.Conclusions. Widespread cerebral morphological TLE abnormalities were represented in this study. However, the lesions may be limited after completing a corrected comparison with clinical information. Boundary values of left-TLE group lesions were also obtained

    Wip1-dependent modulation of macrophage migration and phagocytosis

    Get PDF
    Macrophage accumulation within the vascular wall is a hallmark of atherosclerosis. Controlling macrophage conversion into foam cells remains a major challenge for treatment of atherosclerotic diseases. Here, we show that Wip1, a member of the PP2C family of Ser/Thr protein phosphatases, modulates macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated phagocytic ability of Wip1-/- macrophages is linked to CD36 plasma membrane recruitment that is regulated by AMPK activity. Our study identifies Wip1 as an intrinsic negative regulator of macrophage chemotaxis. We propose that Wip1-dependent control of macrophage function may provide avenues for preventing or eliminating plaque formation in atherosclerosis

    Toward 6G TKμ\mu Extreme Connectivity: Architecture, Key Technologies and Experiments

    Full text link
    Sixth-generation (6G) networks are evolving towards new features and order-of-magnitude enhancement of systematic performance metrics compared to the current 5G. In particular, the 6G networks are expected to achieve extreme connectivity performance with Tbps-scale data rate, Kbps/Hz-scale spectral efficiency, and μ\mus-scale latency. To this end, an original three-layer 6G network architecture is designed to realise uniform full-spectrum cell-free radio access and provide task-centric agile proximate support for diverse applications. The designed architecture is featured by super edge node (SEN) which integrates connectivity, computing, AI, data, etc. On this basis, a technological framework of pervasive multi-level (PML) AI is established in the centralised unit to enable task-centric near-real-time resource allocation and network automation. We then introduce a radio access network (RAN) architecture of full spectrum uniform cell-free networks, which is among the most attractive RAN candidates for 6G TKμ\mu extreme connectivity. A few most promising key technologies, i.e., cell-free massive MIMO, photonics-assisted Terahertz wireless access and spatiotemporal two-dimensional channel coding are further discussed. A testbed is implemented and extensive trials are conducted to evaluate innovative technologies and methodologies. The proposed 6G network architecture and technological framework demonstrate exciting potentials for full-service and full-scenario applications.Comment: 15 pages, 12 figure

    Soil’s Hidden Power : The Stable Soil Organic Carbon Pool Controls the Burden of Persistent Organic Pollutants in Background Soils

    Get PDF
    Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air–surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models
    corecore