5,775 research outputs found

    A Class of Mean-field LQG Games with Partial Information

    Full text link
    The large-population system consists of considerable small agents whose individual behavior and mass effect are interrelated via their state-average. The mean-field game provides an efficient way to get the decentralized strategies of large-population system when studying its dynamic optimizations. Unlike other large-population literature, this current paper possesses the following distinctive features. First, our setting includes the partial information structure of large-population system which is practical from real application standpoint. Specially, two cases of partial information structure are considered here: the partial filtration case (see Section 2, 3) where the available information to agents is the filtration generated by an observable component of underlying Brownian motion; the noisy observation case (Section 4) where the individual agent can access an additive white-noise observation on its own state. Also, it is new in filtering modeling that our sensor function may depend on the state-average. Second, in both cases, the limiting state-averages become random and the filtering equations to individual state should be formalized to get the decentralized strategies. Moreover, it is also new that the limit average of state filters should be analyzed here. This makes our analysis very different to the full information arguments of large-population system. Third, the consistency conditions are equivalent to the wellposedness of some Riccati equations, and do not involve the fixed-point analysis as in other mean-field games. The ϵ\epsilon-Nash equilibrium properties are also presented.Comment: 19 page

    Dynamical correlation functions and the related physical effects in three-dimensional Weyl/Dirac semimetals

    Get PDF
    We present a unified derivation of the dynamical correlation functions including density-density, density-current and current-current, of three-dimensional Weyl/Dirac semimetals by use of the Passarino-Veltman reduction scheme at zero temperature. The generalized Kramers-Kronig relations with arbitrary order of subtraction are established to verify these correlation functions. Our results lead to the exact chiral magnetic conductivity and directly recover the previous ones in several limits. We also investigate the magnetic susceptibilities, the orbital magnetization and briefly discuss the impact of electron interactions on these physical quantities within the random phase approximation. Our work could provide a starting point for the investigation of the nonlocal transport and optical properties due to the higher-order spatial dispersion in three-dimensional Weyl/Dirac semimetals.Comment: 21 pages, 3+1 figures, 1 table. Accepted in PR
    • …
    corecore