2 research outputs found

    ATP Acyl Phosphate Reactivity Reveals Native Conformations of Hsp90 Paralogs and Inhibitor Target Engagement

    No full text
    Hsp90 is an ATP-dependent chaperone of widespread interest as a drug target. Here, using an LC-MS/MS chemoproteomics platform based on a lysine-reactive ATP acyl phosphate probe, several Hsp90 inhibitors were profiled in native cell lysates. Inhibitor specificities for all four human paralogs of Hsp90 were simultaneously monitored at their endogenous relative abundances. Equipotent inhibition of probe labeling in each paralog occurred at sites both proximal to and distal from bound ATP observed in Hsp90 cocrystal structures, suggesting that the ATP probe is assaying a native conformation not predicted by available structures. Inhibitor profiling against a comprehensive panel of protein kinases and other ATP-binding proteins detected in native cell lysates identified PMS2, a member of the GHKL ATPase superfamily as an off-target of NVP-AUY922 and radicicol. Because of the endogenously high levels of Hsp90 paralogs in typical cell lysates, the measured potency of inhibitors was weaker than published IC<sub>50</sub> values. Significant inhibition of Hsp90 required inhibitor concentrations above a threshold where off-target activity was detectable. Direct on- and off-target engagement was measured by profiling lysates derived from cells treated with Hsp90 inhibitors. These studies also assessed the downstream cellular pathway effects of Hsp90 inhibition, including the down regulation of several known Hsp90 client proteins and some previously unknown client proteins. Overall, the ATP probe-based assay methodology enabled a broad characterization of Hsp90 inhibitor activity and specificity in native cell lysates

    Chemoproteomic Evaluation of Target Engagement by the Cyclin-Dependent Kinase 4 and 6 Inhibitor Palbociclib Correlates with Cancer Cell Response

    No full text
    Palbociclib is a cyclin-dependent kinase (CDK) 4/CDK6 inhibitor approved for breast cancer that is estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative. We profiled palbociclib in cells either sensitive or resistant to the drug using an ATP/ADP probe-based chemoproteomics platform. Palbociclib only engaged CDK4 or CDK6 in sensitive cells. In resistant cells, no inhibition of CDK4 or CDK6 was observed, although the off-target profiles were similar in both cell types. Prolonged incubation of sensitive cells with the compound (24 h) resulted in the downregulation of additional kinases, including kinases critical for cell cycle progression. This downregulation is consistent with cell cycle arrest caused by palbociclib treatment. Both the direct and indirect targets were also observed in a human tumor xenograft study using the COLO-205 cell line in which phosphorylation of the retinoblastoma protein was tracked as the pharmacodyanamic marker. Together, these results suggest that this probe-based approach could be an important strategy toward predicting patient responsiveness to palbociclib
    corecore