23 research outputs found

    Electro-optically tunable low phase-noise microwave synthesizer in an active lithium niobate microdisk

    Full text link
    Photonic-based low-phase-noise microwave generation with real-time frequency tuning is crucial for a broad spectrum of subjects, including next-generation wireless communications, radar, metrology, and modern instrumentation. Here, for the first time to the best of our knowledge, narrow-bandwidth dual-wavelength microlasers are generated from nearly degenerate polygon modes in a high-Q active lithium niobate microdisk. The high-Q polygon modes formation with independently controllable resonant wavelengths and free spectral ranges is enabled by the weak perturbation of the whispering gallery microdisk resonators using a tapered fiber. The stable beating signal confirms the low phase-noise achieved in the tunable laser. Owing to the high spatial overlap factors between the two nearly degenerate lasing modes as well as that between the two lasing modes and the pump mode, gain competition between the two modes is suppressed, leading to stable dual-wavelength laser generation and in turn the low noise microwave source. The measured microwave signal shows a linewidth of ~6.87 kHz, a phase noise of ~-123 dBc/Hz, and an electro-optic tuning efficiency of -1.66 MHz/V.Comment: 13 pages, 5 figure

    Erbium-ytterbium co-doped lithium niobate single-mode microdisk laser with an ultralow threshold of 1 uW

    Full text link
    We demonstrate single-mode microdisk lasers in the telecom band with ultra-low thresholds on erbium-ytterbium co-doped thin-film lithium niobate (TFLN). The active microdisk were fabricated with high-Q factors by photo-lithography assisted chemo-mechanical etching. Thanks to the erbium-ytterbium co-doping providing high optical gain, the ultra-low loss nanostructuring, and the excitation of high-Q coherent polygon modes which suppresses multi-mode lasing and allows high spatial mode overlap factor between pump and lasing modes, single-mode laser emission operating at 1530 nm wavelength was observed with an ultra-low threshold, under 980-nm-band optical pump. The threshold was measured as low as 1 uW, which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers. And the conversion efficiency reaches 0.406%, which is also the highest value reported in single-mode active TFLN microlasers.Comment: 5 pages,3 figure

    Salusin-α Inhibits Proliferation and Migration of Vascular Smooth Muscle Cell via Akt/mTOR Signaling

    Get PDF
    Background/Aims: The proliferation and migration of vascular smooth muscle cells (VSMCs) are key steps in the progression of atherosclerosis. The aim of the present study was to investigate the potential roles of salusin-α in the functions of VSMCs during the development of atherosclerosis. Methods: In vivo, the effects of salusin-α on atherogenesis were examined in rabbits fed a cholesterol diet. The aortas were en face stained with Sudan IV to evaluate the gross atherosclerotic lesion size. The cellular components of atherosclerotic plaques were analyzed by immunohistochemical methods. In vitro, Cell Counting Kit-8 and wound-healing assays were used to assess the effects of salusin-α on VSMC proliferation and migration. In addition, western blotting was used to evaluate the total and phosphorylated levels of Akt (also known as protein kinase B) and mammalian target of rapamycin (mTOR) in VSMCs. Results: Salusin-α infusion significantly reduced the aortic lesion areas of atherosclerosis, with a 39% reduction in the aortic arch, a 71% reduction in the thoracic aorta, and a 71% reduction in the abdominal aorta; plasma lipid levels were unaffected. Immunohistochemical staining showed that salusin-α decreased both macrophage- and VSMC-positively stained areas in atherosclerotic lesions by 54% and 69%, cell proliferative activity in the intima and media of arteriosclerotic lesions, and matrix metalloproteinase 2 (MMP-2) and MMP-9 expression in plaques. Studies using cultured VSMCs showed that salusin-α decreased VSMC migration and proliferation via reduced phosphorylation of Akt and mTOR. Conclusion: Our data indicate that salusin-α suppresses the development of atherosclerosis by inhibiting VSMC proliferation and migration through the Akt/mTOR pathway

    The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases

    Get PDF
    High mobility group box 1 (HMGB1) is a nuclear protein that can bind to DNA and act as a co-factor for gene transcription. When released into extracellular fluid, it plays a proinflammatory role by acting as a damage-associated molecular pattern molecule (DAMP) (also known as an alarmin) to initiate innate immune responses by activating multiple cell surface receptors such as the receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs), TLR2, TLR4 or TLR9. This proinflammatory role is now considered to be important in the pathogenesis of a wide range of kidney diseases whether they result from hemodynamic changes, renal tubular epithelial cell apoptosis, kidney tissue fibrosis or inflammation. This review summarizes our current understanding of the role of HMGB1 in kidney diseases and how the HMGB1-mediated signaling pathway may constitute a new strategy for the treatment of kidney diseases

    Differential Patterns of Secreted Frizzled-Related Protein 4 (SFRP4) in Adipocyte Differentiation: Adipose Depot Specificity

    No full text
    Background/Aims: Secreted frizzled-related protein 4 (SFRP4) is a member of the SFRP family that acts as soluble modulators of Wnt signaling. Given the substantial rise in obesity, depot-specific fat accumulation and its associated diseases like diabetes, it is important to understand the molecular basis of depot-specific adipocyte differentiation. In the current study, we investigated the expression of SFRP4 in both subcutaneous and visceral adipose tissue in terms of their differentiation. Methods: White preadipocytes were isolated from the inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) from C57BL/6J mice (age: 8-week-old, male). SFRP4 expression in iWAT and eWAT preadipocytes was silenced by siRNA transfection and harvested cells for gene and protein expression analysis was performed during the differentiation. Furthermore, iWAT and eWAT preadipocytes treated with or without IL-1β were harvested for gene and protein expression analysis. Results: SFRP4 expression levels were gradually increased and proportionally associated with eWAT adipocyte differentiation toward maturation at 14 days, while iWAT adipocyte just showed an opposite tendency. Moreover, genetic (adiponectin, C/EBPα, C/EBPβ, FABP4, GLUT4 and PPARγ) analysis demonstrated that depot-specific adipogenesis in response to SFRP4 silencing in eWAT and iWAT preadipocytes. Upon IL-1β treatment, SFRP4 mRNA expression decreased significantly in iWAT adipocyte, but the expression was no significant difference in eWAT adipocyte. Conclusion: These results suggest that SFRP4 expression differentially mediates adipocyte differentiation and may play an important role in adipogenesis

    Low-Threshold Anti-Stokes Raman Microlaser on Thin-Film Lithium Niobate Chip

    No full text
    Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based on the interaction of light with the Stokes vibrational mode. Unlike redshifted SRS, stimulated anti-Stokes Raman scattering (SARS) further involves the interplay between the pump photon and the SRS photon to generate an upconverted photon, depending on a highly efficient SRS signal as an essential prerequisite. Therefore, achieving SARS in microresonators is challenging due to the low lasing efficiencies of integrated Raman lasers caused by intrinsically low Raman gain. In this work, high-Q whispering gallery microresonators were fabricated by femtosecond laser photolithography assisted chemo-mechanical etching on thin-film lithium niobate (TFLN), which is a strong Raman-gain photonic platform. The high Q factor reached 4.42 × 106, which dramatically increased the circulating light intensity within a small volume. And a strong Stokes vibrational frequency of 264 cm−1 of lithium niobate was selectively excited, leading to a highly efficient SRS lasing signal with a conversion efficiency of 40.6%. And the threshold for SRS was only 0.33 mW, which is about half the best record previously reported on a TFLN platform. The combination of high Q factors, a small cavity size of 120 μm, and the excitation of a strong Raman mode allowed the formation of SARS lasing with only a 0.46 mW pump threshold
    corecore