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Abstract High mobility group box 1 (HMGB1) is a nuclear protein that can bind to DNA and act as a
co-factor for gene transcription. When released into extracellular fluid, it plays a proinflammatory role by
acting as a damage-associated molecular pattern molecule (DAMP) (also known as an alarmin) to initiate
innate immune responses by activating multiple cell surface receptors such as the receptor for advanced
glycation end-products (RAGE) and toll-like receptors (TLRs), TLR2, TLR4 or TLR9. This proin-
flammatory role is now considered to be important in the pathogenesis of a wide range of kidney diseases
whether they result from hemodynamic changes, renal tubular epithelial cell apoptosis, kidney tissue
fibrosis or inflammation. This review summarizes our current understanding of the role of HMGB1 in
kidney diseases and how the HMGB1-mediated signaling pathway may constitute a new strategy for the
treatment of kidney diseases.
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1. Introduction

The kidney is made up of a heterogeneous population of cells
which function together to perform a number of tightly controlled,
complex and interdependent processes. It is frequently targeted
by pathogenic immune responses against renal autoantigens or
by local manifestation of systemic autoimmunity. In fact, many
studies have revealed that kidney disease is associated with
inflammation1.

High mobility group box 1 (HMGB1) is a nuclear DNA-
binding protein discovered over 30 years ago2. Under normal
circumstances, it participates in a variety of biological processes
including transcription, DNA repair, differentiation and develop-
ment3. However, when released from necrotic or activated cells it
functions as a potent proinflammatory cytokine which exerts its
actions through multiple cell-surface receptors including the
receptor for advanced glycation end products (RAGE) and toll-
like receptors (TLRs), TLR2, TLR4 or TLR9. Recently, studies
have shown that HMGB1 plays an important role in the
pathogenesis of a variety of kidney diseases.

This review focuses on the role of HMGB1 in the pathogenesis
of different kidney diseases including acute kidney injury (AKI),
chronic kidney disease (CKD), diabetic nephropathy (DN), anti-
neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis
(AAV), clear cell renal cell carcinoma (ccRCC) and both
granulomatous and lupus nephritis (GN and LN respectively). It
also attempts to evaluate the potential for modulating the HMGB1-
mediated signaling pathway in the treatment of kidney diseases.
2. Characteristics of HMGB1

HMGB1 is a member of the high mobility group nuclear protein
family and one of the most evolutionarily conserved proteins4. The
human HMGB1 gene is located on chromosome 13q12 and six
polymorphic loci throughout the gene locus have recently been
identified. HMGB1 is almost always present in the nuclei of
mammalian cells and is released into the extracellular medium in
response to appropriate stimuli, a process in which the inflamma-
some plays an important role. The release occurs both by active
secretion and a passive process subsequent to inflammation factor
stimulation of inflammatory cells such as dendritic cells and
monocyte/macrophages. After transport from the nucleus to the
cytoplasm, HMGB1 moves into the secretory lysosome and is
secreted from the cell through exocytosis5. When released from
necrotic or burst cells, the damage signal is passed to adjacent
cells6.

In the cytoplasm, HMGB1 regulates cellular processes such as
autophagy and apoptosis7–10. Autophagy is a process associated
with the degradation of intracellular organelles following seques-
tration within double-membrane delimited vacuoles. HMGB1 is
important for oxidative stress–mediated autophagy and serves as a
new target for the treatment of stress-associated disorders8.
Through autophagy, HMGB1 contributes to cell proliferation11

but it also activates endonuclease G and DNA fragmenting factor
(DFF) to promote apoptosis12. In fact, recent research suggests that
heat shock protein β1 (HSPB1) is a response to cardiomyocyte
apoptosis to which HMGB1 contributes13.

HMGB1 released into the extracellular fluid serves as a
damage-associated molecular pattern molecule (DAMP) to medi-
ate the noninfectious inflammatory response14. As shown in
Fig. 1, extracellular HMGB1 can interact with other soluble
molecules, cellular receptors and surface molecules such as
RAGE, TLR2, TLR4, TLR9, syndecan-3, CD24-Siglec-10, macro-
phage antigen-1, chemokine (C-X-C motif) receptor 4 (CXCR4),
certain integrins, and the T cell Ig domain and mucin domain
proteins. It interacts with RAGE at its COOH-terminal motif to
inhibit invasive migration and metastasis15. It interacts with TLR2/4
receptors16 to promote the translocation of cytoplasmic NF-κB into
the nucleus and induce an inflammatory response. It binds to
chemokine (C-X-C motif) ligand 12 (CXCL12) to form a
HMGB1–CXCL12 heterocomplex which interacts with CXCR4
to promote the migration of monocytes and fibroblasts17. Finally,
HMGB1 stimulation contributes to tumor progression by causing
overexpression of miR-21 depending on the interleukin-6 (IL-6)/Stat3
signaling axis18.
3. Expression of HMGB1 in renal diseases

As a potential inflammatory cytokine, HMGB1 plays multiple
roles in the pathogenesis of renal disease. In recent years,
numerous studies have reported the association between HMGB1
expression and renal disease19–34. Evidence from these studies
reveals that in renal disease HMGB1 levels in blood and urine, the
expression of HMGB1 in renal tissue, and the levels of HMGB1 in
the cytoplasm and extracellular medium are all elevated. Table 1
lists studies implicating the expression of HMGB1 in various renal
diseases.
4. HMGB1 and renal disease

4.1. HMGB1 and AKI

AKI is defined as an abrupt and sustained decrease in kidney
function35. It occurs frequently in patients with end-stage liver
disease and cirrhosis and portends a poor prognosis. AKI can
result from a number of causes including ischemia/reperfusion
injury (IRI), sepsis, hemodynamic changes, inflammation and
nephrotoxity36.

A cross-sectional study23 in patients with AKI showed an
elevated serum HMGB1 level related to inflammatory parameters
such as ferritin and orosomucoid. A study in TLR4 deficient
(TLR4� /�) mice37 with IRI of the kidney not only indicated an
increased expression of HMGB1 in the kidney but also found
serum creatinine and tubular injury were reduced after treatment
with anti-HMGB1 antibodies. The results show that HMGB1
promotes kidney injury through TLR4 suggesting inhibiting the
release of HMGB1 could protect against AKI. In fact, Wu et al.38

showed that preconditioning wild-type mice with recombinant
HMGB1 (rHMGB1) before ischemia protects the kidney from
TLR4-dependent IRI and that Siglec-G upregulation is involved.

A study exploring the effect of mycophenolate mofetil (MMF)
on IRI39 demonstrated that plasma creatinine levels and renal
damage were reduced by MMF treatment. TLR4 expression and
the plasma concentration of cytokines were also reduced. How-
ever, there was no change in the concentration of HMGB1
suggesting MMF reduces TLR4 expression directly to improve
renal function. A recent study40 reported CO-releasing molecule-2
decreased the activity of nuclear histone acetyltransferase and
consequently inhibited the acetylation and release of HMGB1 to
exert a protective effect against potentially lethal IRI of the kidney.
HMGB1 released due to IRI reduces the survival of tubular



Table 1 Sites of expression of HMGB1 in various renal diseases.

Renal disease Expression of HMGB1 Reference

Acute kidney injury Serum 23
Chronic kidney disease Serum; urine; 24–26
Renal fibrosis Renal proximal tubule epithelial cells (PTECs); M1 macrophage 32,33
Diabetic nephropathy Renal glomerular cells; tubular epithelial cells 34
Renal involvement of ANCA-AAV Serum; renal tissue 19,20
Clear cell renal cell carcinoma Cytosol 22
Granulomatous nephritis Renal tissue 31
Lupus nephritis Macrophages; renal tissue; serum; urine 27–30

Figure 1 Interaction of extracellular HMGB1 released from inflammatory and necrotic cells with cell surface receptors. (a) HMGB1 binds to
RAGE which induces nuclear transcription of NF-κB, leading to transcription and expression of target genes of cytokines and chemokines;
(b) HMGB1 causes inflammation by interacting with TLR2/TLR4 through MyD88 dependent and independent pathways; (c) the heterocomplex
formed by binding of HMGB1 and CXCL12 promotes the migration of monocytes and fibroblasts.
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epithelial cells (TECs) and augments inflammation. Glycyrrhizic
acid inhibits the interaction of HMGB1 with TECs and attenuates
renal injury following IRI and transplantation41. These findings
demonstrate that HMGB1 plays an important role in IRI through
the TLR4 pathway.
4.2. HMGB1 and CKD

It has been shown that CKD is associated with chronic inflamma-
tion42. A clinical trial involving 110 patients with CKD revealed
that serum HMGB1 was significantly elevated and correlated with
glomerular filtration rate (GFR) as well as with markers of
inflammation and malnutrition. These included high-sensitivity
C-reactive-protein (hs-CRP), IL-6, tumor necrosis factor (TNF),
serum-albumin, hemoglobin A (1c) (HbA (1c)) and hemoglobin25.
The correlation was particularly strong in patients with vasculitis
including Henoch–Schönlein purpura nephritis, and IgA nephro-
pathy (IgAN) with glomerular crescents43. In another study in rats
with adenine-induced CKD26, the HMGB1 concentration was
significantly increased suggesting it may be a potentially useful
biomarker for this condition. Leelahavanichkul et al.24, using a
recently characterized 5/6 nephrectomy (5/6Nx) mouse model of
progressive CKD, found that HMGB1 was released from apoptotic
cells and that CKD-sepsis could be attenuated by anti-HMGB1.
Nakamura et al.44 studied the relationship between the RAGE
ligand and asymmetric dimethylarginine (ADMA) in 20 nondia-
betic normotensive CKD patients and found that HMGB1 eleva-
tion raised the level of ADMA. This suggests the active
involvement of the AGE/HMGB-1–RAGE–ADMA axis in CKD.

Renal fibrosis resulting from CKD is an important public health
concern. Tubulointerstitial fibrosis is characterized by the loss of
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renal tubules, an increased myofibroblast population, and accu-
mulation of extracellular matrix proteins (ECM)45. In a model of
immune-mediated epithelial–mesenchymal transition (EMT) estab-
lished in human proximal TECs (PTECs), human rHMGB1
treatment induced alterations in epithelial morphology consistent
with EMT32. The effect of HMGB1 was mediated at least in part
by RAGE products and through induction of transforming growth
factor-β1 secretion from PTECs. TLR2 is upregulated in kidneys
of patients with tubulointerstitial damage46 and levels of TLR2, its
danger ligands Gp96 and biglycan, and HMGB1 are increased in
mice with obstructive nephropathy. The results demonstrate that
TLR2 can initiate renal inflammation during progressive renal
injury and that the absence of TLR2 does not affect the
development of tubulointerstitial fibrosis. It is possible that the
inhibition of HMGB1 alone or of HMGB1 and TLR2 together is
more effective than inhibition of TLR2 alone in renal fibrosis.
Recently, Tian et al.33 found HMGB1 facilitates M1 macrophage
polarization in the early stage of unilateral ureter obstruction. Thus
inhibition of HMGB1 release may alter macrophage phenotype
and protect kidney tissue from injury and fibrosis. In summary,
HMGB1 plays an important role in the pathogenesis of renal
fibrosis by activating RAGE/TLR2/TLR4.

4.3. HMGB1 and DN

DN is mainly the result of inflammatory processes and metabolic
alterations caused by hyperglycemia47. Kim et al.34 first reported
the association between HMGB1 and DN, showing that in both
cytoplasmic and nuclear patterns of diabetic renal glomerular cells
and TECs, HMGB1 is highly expressed in contrast to cells in
normal rats where HMGB1 is expressed in the nuclei only. RAGE
expression and NF-κB activity were also elevated in diabetic rats
where the binding of NF-κB to the RAGE promoter was increased.
These findings suggest that HMGB1 released during hyperglyce-
mia may induce renal injury in diabetic rats through the participa-
tion of RAGE and activation of NF-κB.

TLR4/TLR2 may also play important roles in DN. Lin et al.48

first studied the effect of TLR4 on DN in human renal biopsies,
human PTECs and an animal model and found that tubulointer-
stitial inflammation is promoted through the TLR4-mediated
pathway. Furthermore, TLR2 contributes to inflammation in DN
through NF-κB activation49. Recently, Mudaliar et al.50 showed
that high glucose levels upregulate HMGB1 in cell supernatants
and TLR4/TLR2 expression in human microvascular endothelial
cells (HMEC-1). In addition, rHMGB1 was found to induce
NF-κB activation and synthesis of proinflammatory cytokines
and chemokines, which were attenuated by inhibition of TLR2
or TLR4 signaling. Therefore it appears likely that hyperglycemia
increases HMGB1 release and that it then binds to RAGE and
TLR2/TLR4 to transduce inflammation through NF-κB activation
and contribute to DN.

4.4. HMGB1 and AAV

AAV is characterized by pauci-immune necrotizing inflammation
of the small blood vessels. In a study of 30 AAV patients19,
HMGB1 was found to be significantly higher in AAV with renal
involvement and to remain higher in inactive cases than in historic
healthy controls. Similarly, a study20 comparing plasma levels of
HMGB1 in patients with active AAV with those in remission and
normal controls found levels were higher in active AAV patients
suggesting HMGB1 may be a marker of disease activity and a
predictor of outcome in AAV.

4.5. HMGB1 and ccRCC

ccRCC is the most common form of cancer of the kidney. In a
study of 39 patients with pathologically confirmed ccRCC by
Takeuchi et al.22, the immunohistological expression of HMGB1
in the cytoplasm was found to correlate with PT1b classification
and tumor grade as previously found by Wu et al.51. Takeuchi
et al. also found evidence that the methylation of HMGB1 at lysine
112 in ccRCC affected its ability to bind to DNA and mediate its
translocation. In a study52 examining the expression of HMGB1,
RAGE and ERK1/2 phosphorylation in patients with ccRCC,
HMGB1 released to cytoplasm was found to promote the devel-
opment and progression of the disease via ERK1/2 activation, a
process partially mediated by RAGE.

4.6. HMGB1 and nephritis

4.6.1. HMGB1 and GN
Granulomas are distinctive chronic inflammatory lesions charac-
terized by aggregations of activated macrophages and marked
fibrosis. Infections, particulates and unidentified factors are
thought to initiate their formation. However, the pathogenetic
mechanisms remain obscure. Oyama et al.31 examined the
expression of HMGB1 and MCP-1 in rats with crystal-induced
GN and found the HMGB1 concentration was higher in renal
granulomas, urine and serum, and that injection of HMGB1
worsened renal function and upregulated MCP-1. They concluded
that HMGB1 was involved in GN and could be a novel target for
inhibiting chronic granulomatous disease.

4.6.2. HMGB1 and LN
Systemic lupus erythematosus (SLE) is a chronic inflammatory
autoimmune disease characterized by multiple organ involvement,
production of autoantibodies to nuclear components, and immune
complex deposition53. LN is common in SLE and evidence
suggests HMGB1 may play an important role. Thus a comparison
of HMGB1 levels in 70 SLE patients and 35 healthy controls
showed that serum levels in SLE patients were higher particularly
in those with active renal disease54. Furthermore, a study of 35
patients with active LN55 evaluated renal biopsies and serum
levels of HMGB1 and found that renal tissue expression and serum
levels were elevated in LN. Abdulahad et al.56 repeated this
finding confirming that HMGB1 is associated with LN but
providing no clarification as to its actual role. However, a recent
study by Li et al.27 revealed macrophage activation induced by
activated lymphocyte-derived DNA (ALD-DNA) contributes to
the pathogenesis of murine LN and that only extracellular but not
intracellular HMGB1 can significantly facilitate this activation and
lead to LN. This suggests that reducing the release of HMGB1
from intracellular stores could ameliorate inflammation in LN.
5. Conclusions

HMGB1 induces inflammation by binding to receptors on cell
membranes (especially TLR2/4 and RAGE) and plays an impor-
tant pathological role in many kidney diseases (Table 2). Although
the mechanisms by which HMGB1 is released and the signaling



Table 2 Roles of HMGB1 in the pathogenesis of renal diseases.

Renal disease Receptor Role of HMGB1 Protection

Acute kidney disease TLR4 Increase systemic circulating cyto/chemokines;
mobilize bone marrow CD34-Flk1-cells to the
circulation

Preconditioning with rHMGB1; MMF; CO-
releasing molecule-2; glycyrrhizic acid

Chronic kidney injury RAGE Enhance asymmetric dimethylarginine (ADMA) Inhibition of HMGB1-RAGE-ADMA axis
Renal fibrosis RAGE TLR2 Induce transforming growth factor-β1 secretion from

PTECs; facilitate M1 polarization
Inhibit HMGB1 release

Diabetic nephropathy RAGE TLR2/TLR4 Activate NF-κB Inhibit HMGB1 release
Clear cell renal cell
carcinoma

RAGE Promote the development and progression of ccRCC
via ERK1/2 activation

–

Lupus nephritis – Facilitate the ALD-DNA induced macrophage
activation

–

Note: “–” indicates no literature.

The research progress of HMGB1 in kidney diseases 187
pathways it activates require further elucidation, evidence suggests
that modulating HMGB1-mediated signaling may constitute a new
strategy for the treatment of kidney diseases. Further animal and
cell studies are required to evaluate how extracellular and
intracellular HMGB1 are implicated in the pathogenesis of
different kidney diseases.
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