11 research outputs found

    The development of prognostic gene markers associated with disulfidptosis in gastric cancer and their application in predicting drug response

    No full text
    Background: Gastric cancer (GC) is a malignancy known for its high fatality rate. Disulfidptosis, a potentially innovative therapeutic strategy for cancer treatment, has been proposed. Nevertheless, the specific involvement of disulfidptosis in the context of GC remains uncertain. Methods: The mRNA expression profiles were obtained from the TCGA and GEO databases. Univariate and LASSO Cox regression analyses were employed to identify differentially expressed genes and develop a risk model for disulfidptosis-related genes. The performance of the model was evaluated using Kaplan-Meier curve, ROC curve, and nomogram. Univariate and multivariate Cox regression analyses were conducted to determine if the risk model could serve as an independent prognostic factor. The biological function of the identified genes was assessed through GO, KEGG, and GSEA analyses. The prediction of drug response was conducted employing the package “pRRophetic”. Furthermore, gene expression was determined using qRT-PCR. Results: An eight-gene signature were identified and utilized to categorize patients into low- and high-risk groups. Survival, receiver operating characteristic (ROC) curve, and Cox analyses provided clarification that these eight hub genes served as a favorable independent prognostic factor for patients with GC. A nomogram was constructed by integrating clinical parameters with the risk signatures, demonstrating high precision in predicting 1-, 3-, and 5-year survival rates. Additionally, drug sensitivity was different in the high-risk and low-risk groups, and the expression of three genes was verified by qRT-PCR. Conclusion: The prognostic risk model developed in this study demonstrates the potential to accurately forecast the prognosis of patients with GC

    Offshore Bridge Detection in Polarimetric SAR Images Based on Water Network Construction Using Markov Tree

    No full text
    It is difficult to detect bridges in synthetic aperture radar (SAR) images due to the inherent speckle noise of SAR images, the interference generated by strong coastal scatterers, and the diversity of bridge and coastal terrain morphologies. In this paper, we present a two-step bridge detection method for polarimetric SAR imagery, in which the probability graph model of a Markov tree is used to build the water network, and bridges are detected by traversing the graph of the water network to determine all adjacent water branch pairs. In the step of the water network construction, candidate water branches are first extracted by using a region-based level set segmentation method. The water network is then built globally as a tree by connecting the extracted water branches based on the probabilistic graph model of a Markov tree, in which a node denotes a single branch and an edge denotes the connection of two adjacent branches. In the step of the bridge detection, all adjacent water branch pairs related to bridges are searched by traversing the constructed tree. Each bridge is finally detected by merging the two contours of the corresponding branch pair. Three polarimetric SAR data acquired by RADARSAT-2 covering Singapore and Lingshui, China, and by TerraSAR-X covering Singapore, are used for testing. The experimental results show that the detection rate, the false alarm rate, and the intersection over union (IoU) between the recognized bridge body and the ground truth are all improved by using the proposed method, compared to the method that constructs a water network based on water branches merging by contour distance

    Offshore Bridge Detection in Polarimetric SAR Images Based on Water Network Construction Using Markov Tree

    No full text
    It is difficult to detect bridges in synthetic aperture radar (SAR) images due to the inherent speckle noise of SAR images, the interference generated by strong coastal scatterers, and the diversity of bridge and coastal terrain morphologies. In this paper, we present a two-step bridge detection method for polarimetric SAR imagery, in which the probability graph model of a Markov tree is used to build the water network, and bridges are detected by traversing the graph of the water network to determine all adjacent water branch pairs. In the step of the water network construction, candidate water branches are first extracted by using a region-based level set segmentation method. The water network is then built globally as a tree by connecting the extracted water branches based on the probabilistic graph model of a Markov tree, in which a node denotes a single branch and an edge denotes the connection of two adjacent branches. In the step of the bridge detection, all adjacent water branch pairs related to bridges are searched by traversing the constructed tree. Each bridge is finally detected by merging the two contours of the corresponding branch pair. Three polarimetric SAR data acquired by RADARSAT-2 covering Singapore and Lingshui, China, and by TerraSAR-X covering Singapore, are used for testing. The experimental results show that the detection rate, the false alarm rate, and the intersection over union (IoU) between the recognized bridge body and the ground truth are all improved by using the proposed method, compared to the method that constructs a water network based on water branches merging by contour distance

    Offshore Oil Platform Detection in Polarimetric SAR Images Using Level Set Segmentation of Limited Initial Region and Convolutional Neural Network

    No full text
    Offshore oil platforms are difficult to detect due to the complex sea state, the sparseness of target distribution, and the similarity of targets with ships. In this paper, we propose an oil platform detection method in polarimetric synthetic aperture radar (PolSAR) images using level set segmentation of a limited initial region and a convolutional neural network (CNN). Firstly, to reduce the interference of sea clutter, the offshore strong scattering targets were initially detected by the generalized optimization of polarimetric contrast enhancement (GOPCE) detector. Secondly, to accurately locate the contour of targets and eliminate false alarms, the coarse results were refined using an improved level set segmentation method. An algorithm for splitting and merging the smallest enclosing circle (SMSEC) was proposed to cover the coarse results and obtain the initial level set function. Finally, the LeNet-5 CNN model was used to classify the oil platforms and ships. Experimental results using multiple sets of polarimetric SAR data acquired by RADARSAT-2 show that the performance of the proposed method, including the detection rate, the false alarm rate, and the Intersection over Union (IOU) index between the extracted ROI and the ground truth, is better than the performance of a method that combines a GOPCE detector and a support vector machine classifier

    A Hybrid Dead Reckon System Based on 3-Dimensional Dynamic Time Warping

    No full text
    In recent years, using smartphones for indoor positioning has become increasingly popular with consumers. This paper presents an integrated localization technique for inertial and magnetic field sensors to challenge indoor positioning without Wi-Fi signals. For dead-reckoning (DR), attitude angle estimation, step length calculation, and step counting estimation are introduced. Dynamic time warping (DTW) usually calculates the distance between the measured magnetic field and magnetic fingerprint in the database. For DR/Magnetic matching (MM), we creatively propose 3-dimensional dynamic time warping (3DDTW) to calculate the distance. Unlike traditional DTW, 3DDTW extends the original one-dimensional signal to a two-dimensional signal. Finally, the weighted least squares further improves indoor positioning accuracy. In the three different experimental scenarios—teaching building, study room, office building—DR/MM hybrid positioning accuracy is about 3.34 m

    An INS/Floor-Plan Indoor Localization System Using the Firefly Particle Filter

    No full text
    Location-based services for smartphones are becoming more and more popular. The core of location-based services is how to estimate a user’s location. An INS/floor-plan indoor localization system, using the Firefly Particle Filter (FPF), is proposed to estimate a user’s location. INS includes an attitude angle module, a step length module and a step counting module. In the step length module, we propose a hybrid step length model. The proposed step length algorithm reasonably calculates a user’s step length. Because of sensor deviation, non-orthogonality and the user’s jitter, the main bottleneck for INS is that the error grows over time. To reduce the cumulative error, we design cascade filters including the Kalman Filter (KF) and FPF. To a certain extent, KF reduces velocity error and heading drift. On the other hand, the firefly algorithm is used to solve the particle impoverishment problem. Considering that a user may not cross an obstacle, the proposed particle filter is proposed to improve positioning performance. Results show that the average positioning error in walking experiments is 2.14 m

    An INS/WiFi Indoor Localization System Based on the Weighted Least Squares

    No full text
    For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m

    Ekf-based carrier tracking in One-Bit quantized gnss receiver

    No full text
    Coarse resolution quantizers are widely used in commercial GNSS receivers to reduce the cost and power consumption. However, when the coarse resolution quantizers are used nonlinear distortion is introduced to the received signals and should be taken into consideration. In this paper, a carrier tracking algorithm based on extended kalman filter (EKF) is proposed for 1-bit quantized GNSS signals. The observation model for 1-bit quantized signals is established theoretically. An approximation of the observation function is proposed and analyzed numerically. Performance of the proposed algorithm is evaluated by simulation, compared with both PLL using 1-bit phase discriminator and EKF using high-resolution samples. ? 2014, SERSC

    Cooperative RIS and Relaying IoV Networks: A Deep Study on Position Analysis

    No full text
    In this paper, a hybrid relay- and reconfigurable intelligent surface- (RIS-) assisted cooperative communication system is proposed. Considering the overall user position referring to the reflective RIS, the downlink propagation can be summarized as two cases: for the first case, the mobile user can only be assisted by the relay (on the back of RIS); for the second case, the mobile user will be assisted by both of the RIS and relay. In our proposed system, a novel concept named “balance position” is investigated, which can be used to resolve specific deployment issue of the RIS. Due to the difficulty of obtaining the closed-form expressions of the achievable capacity, we derive the tight upper bound for the channel gain through observing the central limit theorem (CLM) and Jensen’s inequality and determine its trend for the mobile user. Numerical results verify the correctness of our analysis and superiority of our proposed scheme. Moreover, for an increasing number of RIS elements, the system capacity will be significantly improved, and the balance position will be far away from RIS
    corecore