15 research outputs found

    FoxO3a Modulates Hypoxia Stress Induced Oxidative Stress and Apoptosis in Cardiac Microvascular Endothelial Cells

    Get PDF
    <div><p>Cardiac microvascular endothelial cells (CMECs) dysfunction induced by hypoxia is an important pathophysiological event in myocardium ischemic injury, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors regulate target genes involved in apoptosis and cellular reactive oxygen species (ROS) production. Therefore, the present study was designed to elucidate the potential role of FoxOs on the hypoxia-induced ROS formation and apoptosis in CMECs. Exposure to low oxygen tension stimulated ROS accumulation and increased apoptosis in CMECs within 6–24 h. Hypoxia also significantly increased the expressions of HIF-1α and FoxO3a. However, hypoxia decreased the phosphorylation of Akt and FoxO3a, correlated with increased nuclear accumulation. Conversely, the expression of FoxO1 was not significantly altered by hypoxia. After inhibition of HIF-1α by siRNA, we observed that hypoxia-induced ROS accumulation and apoptosis of CMECs were decreased. Meanwhile, knockdown of HIF-1α also inhibited hypoxia induced FoxO3a expression in CMECs, but did not affect FoxO1 expression. Furthermore, hypoxia-induced ROS formation and apoptosis in CMECs were correlated with the disturbance of Bcl-2 family proteins, which were abolished by FoxO3a silencing with siRNA. In conclusion, our data provide evidence that FoxO3a leads to ROS accumulation in CMECs, and in parallel, induces the disturbance of Bcl-2 family proteins which results in apoptosis.</p></div

    β3-Adrenoreceptor Stimulation Protects against Myocardial Infarction Injury <i>via</i> eNOS and nNOS Activation

    No full text
    <div><p>β3-adrenergic receptor (AR) and the downstream signaling, nitric oxide synthase (NOS) isoforms, have been emerged as novel modulators of heart function and even potential therapeutic targets for cardiovascular diseases. However, it is not known whether β3-AR plays cardioprotective effects against myocardial infarction (MI) injury. Therefore, the present study was designed to determine the effects of β3-AR on MI injury and to elucidate the underlying mechanism. MI model was constructed by left anterior descending (LAD) artery ligation. Animals were administrated with β3-AR agonist BRL37344 (BRL) or β3-AR inhibitor SR59230A (SR) respectively at 0.1 mg/kg/hour one day after MI operation. The scar area, cardiac function and the apoptosis of myocardial were assessed by Masson's trichrome stain, echocardiography and TUNEL assay respectively. Western blot analysis was performed to elucidate the expressions of target proteins. β3-AR activation with BRL administration significantly attenuated fibrosis and decreased scar area after MI. Moreover, BRL also preserved heart function, and reduced the apoptosis of cardiomyocyte induced by MI. Furthermore, BRL treatment altered the phosphorylation status of endothelial NOS (eNOS) and increased the expression of neuronal NOS (nNOS). These results suggested that β3-AR stimulation has a substantial effect on recovery of heart function. In addition, the activations of both eNOS and nNOS may be associated with the cardiac protective effects of β3-AR.</p></div

    HIF-1α regulates the hypoxia-induced ROS accumulation and apoptosis in CMECs.

    No full text
    <p>A: Representative immunofluorescence imagines of ROS formation (red fluorescent) and DAPI (blue fluorescence) in CMECs incubated with HIF-1α siRNA or control siRNA (Crt siRNA) under normoxia or hypoxia condition for 6h. (Scale bars: 20 µm); B: Confocal imaging of cell apoptosis determined by TUNEL assay. Apoptotic nuclei were identified as TUNEL positive (green fluorescent) and total nuclei by DAPI counters taining (blue fluorescent). Scale bar represents 50 µm. C: The average fluorescence intensity of DHE in each group. D: Quantification of the apoptotic CMECs was presented as the percentage of apoptotic cells. (n = 5, *<i>p</i><0.05 vs. Crt siRNA plus normoxia, # <i>p</i><0.05 vs. Crt siRNA plus hypoxia).</p

    Proposed scheme for the mechanism that regulates hypoxia-induced injury in CMECs.

    No full text
    <p>Hypoxia stress increases HIF-1α expression, which subsequently promotes the transcription of FoxO3a and directly stimulates ROS formation. Meanwhile, hypoxia also inhibits the activation of Akt which results in decreased phosphorylation and degradation of FoxO3a. Thus, hypoxia increases FoxO3a translocation to nucleus and the transcription activities, which results in the elevated ROS accumulation and Bcl-2 protein family disturbance. In parallel, increased ROS formation also promotes the activity of FoxO3a which increases the pro-apoptotic proteins Bim and Bax and decreased the anti-apoptotic proteins Bcl-xL and Bcl-2. The disturbance of anti-apoptosis proteins and pro-apoptosis proteins induced by oxidative stress subsequently triggers the apoptosis of CMECs. Accordingly, FoxO3a plays a central role in hypoxia-induced ROS formation and apoptosis in CMECs.</p

    Characterization of CMECs.

    No full text
    <p>A, Confluent CMEC monolayer presents cobblestone morphology (scale bar:20 mm). B¸ CMECs uptook Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) (red, Dil-Ac-LDL; blue, DAPI). C, CMECs express CD31.</p

    FOXO3a affects the expressions of Bcl-2 family proteins in CMECs.

    No full text
    <p>CMECs were incubated with siRNA directed against FoxO3a (FoxO3a siRNA) or scrambled oligonucleotide control RNA (Crt siRNA) and then subjected to hypoxia for 6 h. <b>A</b>: Representative Western blot of HIF-1α, FoxO1, FoxO3a and Bcl-2 proteins, including Bim EL, Bcl xl, Bcl-2 and Bax. The semiquantitative analysis of HIF-1α (B), FoxO1 (C), FoxO3a (D), Bim EL (E), Bcl xl (F), Bcl-2 (G) and Bax (H). The protein expression in CMECs treated with control siRNA (Crt siRNA) under normoxia condition was set as 100%.(n = 5, *<i>p</i><0.05).</p

    Hypoxia promoted FoxO3a nuclear location.

    No full text
    <p>A: Representative immunofluorescence staining for subcellular localization of FoxO3a (green fluorescent) in CMECs under hypoxia condition for the indicated time points. (Scale bars: 20 µm) B: Quantification of FoxO3 nuclear or cytoplasmic localization in CMECs (n = 5).</p

    Effect of BRL and SR on LV dilation and LV systolic function after MI.

    No full text
    <p>(A) Representative M-mode echocardiography images were taken at the level of the papillary muscle where left ventricular diameters can be measured. Quantification of left ventricular end diastolic diameter (LVEDd) (B), end systolic diameter (LVESd) (C), left ventricular ejection fraction (EF) (D) and fractional shortening (FS) (E) 4 weeks after MI. (*<i>p</i><0.05 <i>vs</i>. MI.)</p

    β3-AR stimulation decreased cardiomyocyte apoptosis.

    No full text
    <p>(A) Representative photographs of TUNEL-stained heart sections from sham group, MI group, MI+BRL group and MI+SR group. Apoptotic nuclei were identified as TUNEL positive (green fluorescent). Myocardium was stained using a monoclonal antibody against Troponin I (red fluorescent) and total nuclei was stained by DAPI (blue fluorescent). Scale bar represents 50 µm. (B) Apoptotic cells were quantified by apoptotic index (AI) which was termed as the percentage of apoptotic cells. (C) BRL administration also significantly decreased caspase-3 activity compared with MI group and MI+SR group (*<i>p</i><0.05).</p

    Hypoxia increases ROS production and apoptosis of CMECs.

    No full text
    <p>A: Representative immunofluorescence imagines of ROS formation (red fluorescent), apoptosis (TUNEL, green fluorescent) and DAPI (blue fluorescence) in CMECs under hypoxia condition for the indicated time points. (Scale bars: 20 µm) B: The average fluorescence intensity of DHE in each group. C: Quantification of the apoptotic CMECs was presented as the percentage of apoptotic cells. (n = 5,*<i>p</i><0.05 vs. control).</p
    corecore