68 research outputs found

    Hierarchical Theory of Quantum Adiabatic Evolution

    Full text link
    Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between non-degenerate instantaneous eigen-energy levels in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy levels. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians are constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kkth-order deviations are governed by a kkth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kkth-order. Two simple examples, the Landau-Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory.Comment: 10 pages, 6 figures, 29 reference

    Sensitive frequency-dependence of the carrier-envelope phase effect on bound-bound transition: an interference perspective

    Full text link
    We investigate numerically with Hylleraas coordinates the frequency dependence of the carrier-envelope phase (CEP) effect on bound-bound transitions of helium induced by an ultrashort laser pulse of few cycles. We find that the CEP effect is very sensitive to the carrier frequency of the laser pulse, occurring regularly even at far-off resonance frequencies. By analyzing a two-level model, we find that the CEP effect can be attributed to the quantum interference between neighboring multi-photon transition pathways, which is made possible by the broadened spectrum of the ultrashort laser pulse. A general picture is developed along this line to understand the sensitivity of the CEP effect to laser's carrier frequency. Multi-level influence on the CEP effect is also discussed

    Crystal structure of [5,5′-((propane-1,3-diylbis(azanylylidene))bis(ethan-1-yl-2-ylidene))bis(3-(ethoxycarbonyl)-2,4-dimethylpyrrol-1-ido)-κ4N,N′,N′′,N′′′]nickel(II), C23H30N4O4Ni

    Get PDF
    Abstract C23H30N4O4Ni, triclinic, P1̄ (no. 2), a = 7.5883(9) Å, b = 12.3110(15) Å, c = 12.7718(15) Å, α = 95.621(2)°, β = 99.908(2)°, γ = 101.30(2)°, V = 1141.8(2) Å3, Z = 2, R gt(F) = 0.0433, wR ref(F 2) = 0.1239, T = 296 K

    Reaction kinetics of CN + toluene and its implication on the productions of aromatic nitriles in the Taurus molecular cloud and Titan's atmosphere

    Full text link
    Reactions between cyano radical and aromatic hydrocarbons are believed to be important pathways for the formation of aromatic nitriles in the interstellar medium (ISM) including those identified in the Taurus molecular cloud (TMC-1). Aromatic nitriles might participate in the formation of polycyclic aromatic nitrogen containing hydrocarbons (PANHs) in Titan's atmosphere. Here, ab initio kinetics simulations reveal a high efficiency of 1010 cm3 s1\rm \sim10^{-10}~cm^{3}~s^{-1} and the competition of the different products of 30-1800 K and 10710^{-7}-100 atm of the CN + toluene reaction. In the star-forming region of TMC-1 environment, the product yields of benzonitrile and tolunitriles for CN reacting with toluene may be approximately 17%\% and 83%\%, respectively. The detection of main products, tolunitriles, can serve as proxies for the undetected toluene in the ISM due to their much larger dipole moments. The competition between bimolecular and unimolecular products is extremely intense under the warmer and denser PANH forming region of Titan's stratosphere. The computational results show that the fractions of tolunitriles, adducts, and benzonitrile are 19%\%-68%\%, 15%\%-64%\% and 17%\%, respectively, at 150-200 K and 0.0001-0.001 atm (Titan's stratosphere). Then, benzonitrile and tolunitriles may contribute to the formation of PANHs by consecutive C2H\rm C_{2}H additions. Kinetic information of aromatic nitriles for the CN + toluene reaction calculated here helps to explain the formation mechanism of polycyclic aromatic hydrocarbons (PAHs) or PANHs under different interstellar environments and constrains corresponding astrochemical models

    Interlayer Interactions in Anisotropic Atomically-thin Rhenium Diselenide

    Full text link
    Recently, two-dimensional (2D) materials with strong in-plane anisotropic properties such as black phosphorus have demonstrated great potential for developing new devices that can take advantage of its reduced lattice symmetry with potential applications in electronics, optoelectronics and thermoelectrics. However, the selection of 2D material with strong in-plane anisotropy has so far been very limited and only sporadic studies have been devoted to transition metal dichalcogenides (TMDC) materials with reduced lattice symmetry, which is yet to convey the full picture of their optical and phonon properties, and the anisotropy in their interlayer interactions. Here, we study the anisotropic interlayer interactions in an important TMDC 2D material with reduced in-plane symmetry - atomically thin rhenium diselenide (ReSe2) - by investigating its ultralow frequency interlayer phonon vibration modes, the layer dependent optical bandgap, and the anisotropic photoluminescence (PL) spectra for the first time. The ultralow frequency interlayer Raman spectra combined with the first study of polarization-resolved high frequency Raman spectra in mono- and bi-layer ReSe2 allows deterministic identification of its layer number and crystal orientation. PL measurements show anisotropic optical emission intensity with bandgap increasing from 1.26 eV in the bulk to 1.32 eV in monolayer, consistent with the theoretical results based on first-principle calculations. The study of the layer-number dependence of the Raman modes and the PL spectra reveals the relatively weak van der Waals interaction and 2D quantum confinement in atomically-thin ReSe2.Comment: 17 pages, 5 figures, supplementary informatio

    Leveraging Graph-based Cross-modal Information Fusion for Neural Sign Language Translation

    Full text link
    Sign Language (SL), as the mother tongue of the deaf community, is a special visual language that most hearing people cannot understand. In recent years, neural Sign Language Translation (SLT), as a possible way for bridging communication gap between the deaf and the hearing people, has attracted widespread academic attention. We found that the current mainstream end-to-end neural SLT models, which tries to learning language knowledge in a weakly supervised manner, could not mine enough semantic information under the condition of low data resources. Therefore, we propose to introduce additional word-level semantic knowledge of sign language linguistics to assist in improving current end-to-end neural SLT models. Concretely, we propose a novel neural SLT model with multi-modal feature fusion based on the dynamic graph, in which the cross-modal information, i.e. text and video, is first assembled as a dynamic graph according to their correlation, and then the graph is processed by a multi-modal graph encoder to generate the multi-modal embeddings for further usage in the subsequent neural translation models. To the best of our knowledge, we are the first to introduce graph neural networks, for fusing multi-modal information, into neural sign language translation models. Moreover, we conducted experiments on a publicly available popular SLT dataset RWTH-PHOENIX-Weather-2014T. and the quantitative experiments show that our method can improve the model
    corecore