16,265 research outputs found
Monte-Carlo Simulations of Spin-Crossover Phenomena Based on a Vibronic Ising-like Model with Realistic Parameters
Materials with spin-crossover (SCO) properties hold great potentials in
information storage and therefore have received a lot of concerns in the recent
decades. The hysteresis phenomena accompanying SCO is attributed to the
intermolecular cooperativity whose underlying mechanism may have a vibronic
origin. In this work, a new vibronic Ising-like model in which the elastic
coupling between SCO centers is included by considering harmonic stretching and
bending (SAB) interactions is proposed and solved by Monte Carlo simulations.
The key parameters in the new model, and , corresponding to the
elastic constant of the stretching and bending mode, respectively, can be
directly related to the macroscopic bulk and shear modulus of the material in
study, which can be readily estimated either based on experimental measurements
or first-principles calculations. The convergence issue in the MC simulations
of the thermal hysteresis has been carefully checked, and it was found that the
stable hysteresis loop can be more readily obtained when using the SAB model
compared to that using the Wajnflasz-Pick model. Using realistic parameters
estimated based on first-principles calculations of a specific polymeric
coordination SCO compound, [Fe(pz)Pt(CN)]2HO,
temperature-induced hysteresis and pressure effects on SCO phenomena are
simulated successfully.Comment: 8 pages, 8 figure
A putative ATPase mediates RNA transcription and capping in a dsRNA virus.
mRNA transcription in dsRNA viruses is a highly regulated process but the mechanism of this regulation is not known. Here, by nucleoside triphosphatase (NTPase) assay and comparisons of six high-resolution (2.9-3.1 Ã…) cryo-electron microscopy structures of cytoplasmic polyhedrosis virus with bound ligands, we show that the large sub-domain of the guanylyltransferase (GTase) domain of the turret protein (TP) also has an ATP-binding site and is likely an ATPase. S-adenosyl-L-methionine (SAM) acts as a signal and binds the methylase-2 domain of TP to induce conformational change of the viral capsid, which in turn activates the putative ATPase. ATP binding/hydrolysis leads to an enlarged capsid for efficient mRNA synthesis, an open GTase domain for His217-mediated guanylyl transfer, and an open methylase-1 domain for SAM binding and methyl transfer. Taken together, our data support a role of the putative ATPase in mediating the activation of mRNA transcription and capping within the confines of the virus
Actively controlling the topological transition of dispersion based on electrically controllable metamaterials
Topological transition of the iso-frequency contour (IFC) from a closed
ellipsoid to an open hyperboloid, will provide unique capabilities for
controlling the propagation of light. However, the ability to actively tune
these effects remains elusive and the related experimental observations are
highly desirable. Here, tunable electric IFC in periodic structure which is
composed of graphene/dielectric multilayers is investigated by tuning the
chemical potential of graphene layer. Specially, we present the actively
controlled transportation in two kinds of anisotropic zero-index media
containing PEC/PMC impurities. At last, by adding variable capacitance diodes
into two-dimensional transmission-line system, we present the experimental
demonstration of the actively controlled magnetic topological transition of
dispersion based on electrically controllable metamaterials. With the increase
of voltage, we measure the different emission patterns from a point source
inside the structure and observe the phase-transition process of IFCs. The
realization of actively tuned topological transition will opens up a new avenue
in the dynamical control of metamaterials.Comment: 21 pages,8 figure
- …