972 research outputs found

    PM2.5-GNN: A Domain Knowledge Enhanced Graph Neural Network For PM2.5 Forecasting

    Full text link
    When predicting PM2.5 concentrations, it is necessary to consider complex information sources since the concentrations are influenced by various factors within a long period. In this paper, we identify a set of critical domain knowledge for PM2.5 forecasting and develop a novel graph based model, PM2.5-GNN, being capable of capturing long-term dependencies. On a real-world dataset, we validate the effectiveness of the proposed model and examine its abilities of capturing both fine-grained and long-term influences in PM2.5 process. The proposed PM2.5-GNN has also been deployed online to provide free forecasting service.Comment: Pre-print version of a ACM SIGSPATIAL 2020 poster [paper](https://dl.acm.org/doi/10.1145/3397536.3422208). The code is available at [Github](https://github.com/shawnwang-tech/PM2.5-GNN), and the talk is available at [YouTube](https://www.youtube.com/watch?v=VX93vMthkGM

    A developmental approach to robotic pointing via human–robot interaction

    Get PDF
    This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/)The ability of pointing is recognised as an essential skill of a robot in its communication and social interaction. This paper introduces a developmental learning approach to robotic pointing, by exploiting the interactions between a human and a robot. The approach is inspired through observing the process of human infant development. It works by first applying a reinforcement learning algorithm to guide the robot to create attempt movements towards a salient object that is out of the robot's initial reachable space. Through such movements, a human demonstrator is able to understand the robot desires to touch the target and consequently, to assist the robot to eventually reach the object successfully. The human-robot interaction helps establish the understanding of pointing gestures in the perception of both the human and the robot. From this, the robot can collect the successful pointing gestures in an effort to learn how to interact with humans. Developmental constraints are utilised to drive the entire learning procedure. The work is supported by experimental evaluation, demonstrating that the proposed approach can lead the robot to gradually gain the desirable pointing ability. It also allows that the resulting robot system exhibits similar developmental progress and features as with human infants

    In silico screening of potentially bioactive-anti-functional dyspepsia constituents of Magnoliae officinalis Cortex based on molecular docking and network pharmacology

    Get PDF
    Purpose: To screen for bioactive anti-functional dyspepsia compounds from Magnoliae officinalis Cortex (Hou Po) and to identify the mechanism(s) of action involved.Methods: The compounds of Hou Po were collected from the literature. The related target proteins were identified from DrugBank. Through  “Libdock” module of Discovery Studio 3.5, the compounds were matched with related target proteins. Taking the Libdock score of the original ligand with target protein as standard, components with higher scores than this standard were considered as potential bioactive compounds. Based on Cytoscape software, the interaction networks of the bioactive compound-target protein complexes were mapped. On the other hand, the online DAVID database was used to analyze the GO enrichment and KEGG pathway of each target.Results: A total of 199 chemical constituents and 13 correlated target proteins were obtained. One hundred and thirty-nine (139) potential bioactive constituents were acquired based on molecular docking. Thirty-one (31) bioactive compounds were selected based on degree values in networkanalysis. “Palmitone” and “magnolignan G” which had the highest degree values were considered promising and leading compounds. The result of gene enrichment analysis showed that the bioactive compounds exerted their effects mainly via “neuroactive ligand-receptor interaction” pathway and “Cholinergic synapse” pathways.Conclusion: Based on molecular docking and network pharmacology technique, the material basis for the use of Hou Po in the treatment of FD has been revealed. This finding provides a useful guide in the development of Hou Po-based anti-FD drugs. Keywords: Magnolia officinalis, Hou Po, Molecular docking, Functional dyspepsia, Network pharmacolog

    Towards Identifying Social Bias in Dialog Systems: Frame, Datasets, and Benchmarks

    Full text link
    The research of open-domain dialog systems has been greatly prospered by neural models trained on large-scale corpora, however, such corpora often introduce various safety problems (e.g., offensive languages, biases, and toxic behaviors) that significantly hinder the deployment of dialog systems in practice. Among all these unsafe issues, addressing social bias is more complex as its negative impact on marginalized populations is usually expressed implicitly, thus requiring normative reasoning and rigorous analysis. In this paper, we focus our investigation on social bias detection of dialog safety problems. We first propose a novel Dial-Bias Frame for analyzing the social bias in conversations pragmatically, which considers more comprehensive bias-related analyses rather than simple dichotomy annotations. Based on the proposed framework, we further introduce CDail-Bias Dataset that, to our knowledge, is the first well-annotated Chinese social bias dialog dataset. In addition, we establish several dialog bias detection benchmarks at different label granularities and input types (utterance-level and context-level). We show that the proposed in-depth analyses together with these benchmarks in our Dial-Bias Frame are necessary and essential to bias detection tasks and can benefit building safe dialog systems in practice

    Transcutaneous auricular vagus nerve stimulation with task-oriented training improves upper extremity function in patients with subacute stroke: a randomized clinical trial

    Get PDF
    BackgroundTranscutaneous auricular vagus nerve stimulation (taVNS) has emerged as a promising brain stimulation modality in poststroke upper extremity rehabilitation. Although several studies have examined the safety and reliability of taVNS, the mechanisms underlying motor recovery in stroke patients remain unclear.ObjectivesThis study aimed to investigate the effects of taVNS paired with task-oriented training (TOT) on upper extremity function in patients with subacute stroke and explore the potential underlying mechanisms.MethodsIn this double-blinded, randomized, controlled pilot trial, 40 patients with subacute stroke were randomly assigned to two groups: the VNS group (VG), receiving taVNS during TOT, and the Sham group (SG), receiving sham taVNS during TOT. The intervention was delivered 5 days per week for 4 weeks. Upper extremity function was measured using the Fugl-Meyer Assessment-Upper Extremity (FMA-UE), the Action Research Arm Test (ARAT). Activities of daily living were measured by the modified Barthel Index (MBI). Motor-evoked potentials (MEPs) were measured to evaluate cortical excitability. Assessments were administered at baseline and post-intervention. Additionally, the immediate effect of taVNS was detected using functional near-infrared spectroscopy (fNIRS) and heart rate variability (HRV) before intervention.ResultsThe VG showed significant improvements in upper extremity function (FMA-UE, ARAT) and activities of daily living (MBI) compared to the SG at post-intervention. Furthermore, the VG demonstrated a higher rate of elicited ipsilesional MEPs and a shorter latency of MEPs in the contralesional M1. In the VG, improvements in FMA-UE were significantly associated with reduced latency of contralesional MEPs. Additionally, fNIRS revealed increased activation in the contralesional prefrontal cortex and ipsilesional sensorimotor cortex in the VG in contrast to the SG. However, no significant between-group differences were found in HRV.ConclusionThe combination of taVNS with TOT effectively improves upper extremity function in patients with subacute stroke, potentially through modulating the bilateral cortex excitability to facilitate task-specific functional recovery

    A developmental approach to robotic pointing via human-robot interaction

    Get PDF
    The ability of pointing is recognised as an essential skill of a robot in its communication and social interaction. This paper introduces a developmental learning approach to robotic pointing, by exploiting the interactions between a human and a robot. The approach is inspired through observing the process of human infant development. It works by first applying a reinforcement learning algorithm to guide the robot to create attempt movements towards a salient object that is out of the robot's initial reachable space. Through such movements, a human demonstrator is able to understand the robot desires to touch the target and consequently, to assist the robot to eventually reach the object successfully. The human-robot interaction helps establish the understanding of pointing gestures in the perception of both the human and the robot. From this, the robot can collect the successful pointing gestures in an effort to learn how to interact with humans. Developmental constraints are utilised to drive the entire learning procedure. The work is supported by experimental evaluation, demonstrating that the proposed approach can lead the robot to gradually gain the desirable pointing ability. It also allows that the resulting robot system exhibits similar developmental progress and features as with human infants

    A Quenched Study of SU(3) Glueballs at Finite Temperature

    Full text link
    Thermal properties of glueballs in SU(3) Yang-Mills theory are investigated in a large temperature range from 0.3Tc0.3T_c to 1.9Tc1.9T_c on anisotropic lattices. The glueball operators are optimized for the projection of the ground states by the variational method with a smearing scheme. Their thermal correlators are calculated in all 20 symmetry channels. It is found in all channels that the pole masses MGM_G of glueballs remain almost constant when the temperature is approaching the critical temperature TcT_c from below, and start to reduce gradually with the temperature going above TcT_c. The correlators in the 0++0^{++}, 0+0^{-+}, and 2++2^{++} channels are also analyzed based on the Breit-Wigner \emph{Ansatz} by assuming a thermal width Γ\Gamma to the pole mass ω0\omega_0 of each thermal glueball ground state. While the values of ω0\omega_0 are insensitive to TT in the whole temperature range, the thermal widths Γ\Gamma exhibit distinct behaviors at temperatures below and above TcT_c. The widths are very small (approximately few percent of ω0\omega_0 or even smaller) when TTcTT_c and reach values of roughly Γω0/2\Gamma\sim \omega_0/2 at T1.9TcT\approx 1.9T_c.Comment: 13 pages, 38 figure
    corecore