4 research outputs found

    Bmi1 expression pattern and its role in 5-Fu resistance in breast cancer cells.

    No full text
    <p>(A) mRNA (up) and protein (down) expression levels of Bmi1 in selected breast cancer cells; (B) Dose-survival index curves (up) were plotted from MTS assay results from three independent experiments and IC50 values (down) for 5-Fu were calculated in selected cell lines with differentail expression of Bmi1, vs MCF-7, * p<0.05, ** p<0.01; (C) MDA-MB-231 cell line was selected for verifying the knockdown efficiancey of Bmi1 specific shRNAs; (D) Dose-survival index curves (left) were plotted from MTS assay results from three independent experiments and IC50 values (right) for 5-Fu were calculated in ectopic Bmi1 overexpressed or Bmi1 knockdown cell lines, vs control, * p<0.05; (E) FACS analysis of cell-surface marker CD44 and CD24 in cell lines to indicate the breast cancer stem cell subpopulation.</p

    miR-200c and miR-203 target Bmi1 expression.

    No full text
    <p>(A) Schematic of predicted miR-200c and miR-203 sites in the human Bmi1 3′UTR broadly conserved among vertebrates; (B) miR-200c and miR-203 expression status in selected cell lines, verse MCF-7 * p<0.01; (C) miR-200c mimics and miR-203 expression vector increased miR-200c and miR-203 expression, verse control * p<0.01; (D) Inverse relationship between miR-200c and miR-203 and Bmi1 protein levels was showed; (E) and (F) Mir-200c and miR-203 suppressed the activity of the luciferase gene linked by the 3′UTR of Bmi1 respectively and a Renilla luciferase reporter for normalization. The data was obtained from three independent experiments. The mean of the results from 293T cells transfected with pMir-control and miR-200c mimics or pSlience-miR-203 were set as 1.0 respectively, * p<0.01.</p

    Bmi1 affects the mitochondrial apoptotic pathway in breast cancer cells.

    No full text
    <p>(A) Effects of 100mg/L on selected cell lines with different Bmi1 expression level. After exposure to 100mg/L 5-Fu for 12h, cells were harvested and cell death were measured with Apoptosis Detection Kit and each figures represents three independent experiments; (B) Western blot showed the reverse relationship between Bmi1 and apoptosis related molecules Bcl2 and Bax in selected cell lines; (C) Western blot showed cytochrome-C (Cyto-C) release and Caspase 9 and Caspase 7 activation after 100mg/L 5-Fu treatment on selected cell lines; (D) Effect of Bmi1 on 5-Fu-induced caspase 9 and caspase 7 activation on selected cell lines. The relative activation of caspase 9 and caspase 7 was calculated from the average of three experiments, versus control, * p<0.05, ** p<0.01.</p

    Synthesis of Easily Transferred 2D Layered BiI<sub>3</sub> Nanoplates for Flexible Visible-Light Photodetectors

    No full text
    Bismuth triiodide, BiI<sub>3</sub>, is one of the promising 2D layered materials from the family of metal halides. The unique electronic structure and properties make it an attractive material for the room-temperature gamma/X-ray detectors, high-efficiency photovoltaic absorbers, and Bi-based organic–inorganic hybrid perovskites. Other possibilities including optoelectronic devices and optical circuits are envisioned but rarely experimentally confirmed yet. Here, we report the synthesis of vertical 2D BiI<sub>3</sub> nanoplates using the physical vapor deposition mechanism. The obtained products were found easy to be separated and transferred to other substrates. Photodetectors employing such 2D nanoplates on polyethylene terephthalate substrate are demonstrated to be quite sensitive to red light (635 nm) with good responsivity (2.8 A W<sup>–1</sup>), fast stable photoresponse (3/9 ms for raise/decay times), and remarkable specific detectivity (1.2 × 10<sup>12</sup> jones), which attest to high comparability of the assembled components with many latest 2D nanostructured light sensors. In addition, such photodetectors exhibit outstanding mechanical stability and durability under different bending strains within the theoretically affordable levels, suggesting a variety of potential applications of 2D BiI<sub>3</sub> for flexible devices
    corecore