27 research outputs found

    Evaluating the Toxic Effects of Tannic Acid Treatment on Hyphantria cunea Larvae

    No full text
    To increase the development potential of botanical pesticides, it is necessary to expand the toxicology research on plant secondary metabolites. Herein, the Hyphantria cunea larvae were exposed to tannic acid concentrations consistent with those found in larch needles, and, subsequently, the growth and nutrient utilization, oxidative damage, and detoxification abilities in the larval midgut, as well as the changes in the gut microbiome, were analyzed. Our results revealed that tannic acid treatment significantly increased the mortality of H. cunea larvae and inhibited larval growth and food utilization. The contents of malondialdehyde and hydrogen peroxide in the larval midgut were significantly elevated in the treatment group, along with a significant decrease in the activities of antioxidant enzymes and detoxifying enzymes. However, the non-enzymatic antioxidants showed a significant increase in the tannic acid-treated larvae. From gut microbiome analysis in the treatment group, the abundance of gut microbiota related to toxin degradation and nutrient metabolism was significantly reduced, and the enrichment analysis also suggested that all pathways related to nutritional and detoxification metabolism were substantially inhibited. Taken together, tannic acid exerts toxic effects on H. cunea larvae at multiple levels and is a potential botanical pesticide for the control of H. cunea larvae

    Cadmium exposure-triggered growth retardation in Hyphantria cunea larvae involves disturbances in food utilization and energy metabolism

    No full text
    Serious environmental pollution in the ecosystem makes phytophagous insects face a great risk of exposure to pollutants, especially heavy metals. This study aims to understand the effects of Cd exposure on the growth and development of Hyphantria cunea and to elucidate the mechanism of growth toxicity induced by Cd from the perspective of food utilization and energy metabolism. Our results showed that the larval basal growth data, growth index, fitness index, and standard growth index were significantly decreased after feeding on Cd-containing artificial diets. The Cd-treated larvae had significantly higher digestibility than the untreated larvae. However, the food consumption, efficiency of conversion of digested food, and efficiency of conversion of ingested food were significantly lower than those of untreated larvae. Eight key metabolites in the glycolysis pathway and six key metabolites in the tricarboxylic acid cycle pathway were significantly reduced in Cd-treated larvae. The mRNA expression levels of two regulatory genes (6-phosphofructokinase 1 and hexokinase-1) belonging to two key enzymes in the glycolysis pathway and four regulatory genes (isocitrate dehydrogenase-1, isocitrate dehydrogenase-3, citrate synthase, and oxoglutarate dehydrogenase) belonging to three key enzymes in the tricarboxylic acid cycle pathway were significantly lower in the Cd-treated group than in the control group. Furthermore, most fitness-related traits were significantly and positively correlated with food utilization (except approximate digestibility) or energy metabolism parameters. Taken together, Cd exposure-triggered growth retardation of H. cunea larvae is a consequence of disturbances in food utilization and energy metabolism, thereby emphasizing the toxicity of heavy metals

    Effects of Arbuscular Mycorrhizal Fungi-Colonized Populus alba × P. berolinensis Seedlings on the Microbial and Metabolic Status of Gypsy Moth Larvae

    No full text
    Arbuscular mycorrhizal fungi (AMF) are considered as important biological factors that can affect insect resistance of plants. Herein, we used AMF-poplar seedlings that could either increase or decrease the resistance to gypsy moth larvae, to elucidate the mechanism of mycorrhizal-induced insect resistance/susceptibility at the larval microbial and metabolic levels. Our results found that larval plant consumption and growth were significantly inhibited in the Glomus mossae (GM)-colonized seedlings, whereas they were enhanced in the Glomus intraradices (GI)-colonized seedlings. GM inoculation reduced the beneficial bacteria abundance in the larval gut and inhibited the detoxification and metabolic functions of gut microbiota. However, GI inoculation improved the larval gut environment by decreasing the pathogenic bacteria and activating specific metabolic pathways. Furthermore, GM inoculation triggers a metabolic disorder in the larval fat body, accompanied by the suppression of detoxification and energy production pathways. The levels of differentially accumulated metabolites related to amino acid synthesis and metabolism and exogenous toxin metabolism pathways were significantly increased in the GI group. Taken together, the disadaptation of gypsy moth larvae to leaves of GM-colonized seedlings led to the GM-induced insect resistance in poplar, and to the GI-induced insect susceptibility involved in the improvement of larval gut environment and fat body energy metabolism

    High expression of TBRG4 in relation to unfavorable outcome and cell ferroptosis in hepatocellular carcinoma

    No full text
    Abstract Background Hepatocellular carcinoma (HCC) is the most common type of malignant liver tumor with poor prognosis. In this study, we investigated the expression of transforming growth factor beta regulator 4 (TBRG4) in HCC and its effects on the proliferation, invasion, and metastasis of HCC cells, and analyzed the possible molecular mechanisms. Method Downloading the expression and clinical information of HCC samples in the TCGA database, analyzing the expression differences of TBRG4 by bioinformatics methods, analyzing the clinical relevance and prognostic significance. Performing GO, KEGG and GSEA enrichment analysis on the TBRG4-related gene set in patient HCC tissues. Applying cell counting, scratch test and Transwell experiment to study the biological function of TBRG4 in HCC. Mitochondrial membrane potential, apoptosis and ROS levels were evaluated to assess cell iron death. Western blot, RT-PCR, laser confocal microscopy and co-immunoprecipitation were used to detect and analyze the downstream signaling pathways and interacting molecules of TBRG4. Results Bioinformatics analysis revealed that TBRG4 was abnormally highly expressed in HCC tumor tissues and was associated with poor prognosis and metastasis in HCC patients. GO and KEGG functional enrichment analysis showed that TBRG4 was related to oxidative stress and NADH dehydrogenase (ubiquinone) activity. GSEA enrichment analysis showed that TBRG4 was associated with Beta catenin independent wnt signaling and B cell receptor. Functional experiments confirmed that knocking down TBRG4 could inhibit the proliferation, migration, and invasion of HCC cells. Mechanistically, TBRG4 inhibited the function of HCC cells through the DDX56/p-AKT/GSK3β signaling pathway. In addition, interference with TBRG4 expression could reduce the mitochondrial membrane potential and accumulate ROS in HCC cells, leading to increased ferroptosis. Co-IP analysis showed that TBRG4 specifically bound to Beclin1. Conclusion TBRG4 is highly expressed in HCC tumor tissues and is associated with poor prognosis. It may regulate the proliferation, invasion, and metastasis of HCC cells through the DDX56/p-AKT/GSK3β signaling pathway. TBRG4 may interact with Beclin1 to regulate the ferroptosis of HCC cells

    Additional file 1 of High expression of TBRG4 in relation to unfavorable outcome and cell ferroptosis in hepatocellular carcinoma

    No full text
    Additional file 1: Supplemental Fig. 1. Validation of TBRG4 in ICGC cohort and migration experiment. Supplemental Fig. 2. Original image of western blot experiment

    Cloning and Expression Analysis of Citrus Genes CsGH3.1 and CsGH3.6 Responding to Xanthomonas axonopodis pv. citri Infection

    No full text
    To study the functions of the early auxin-responsive genes CsGH3.1 and CsGH3.6 in citrus resistance against canker disease, we cloned CsGH3.1 and CsGH3.6 in ‘Newhall’ Navel Orange (Citrus sinensis Osbeck). They are 1 797 bp and 1 887 bp and encode 598 and 629 amino acids, respectively. In vitro mature leaves from susceptible ‘Newhall’ and resistant Calamondin (C. madurensis) were inoculated by a Xanthomonas axonopodis pv. citri (Xac) bacterial suspension, and expression of CsGH3.1 and CsGH3.6 in the two varieties were analyzed using quantitative real-time PCR (qRT-PCR). ‘Newhall’ leaves were treated with different hormones for 3 days, inoculated by Xac bacterial suspension, and then the symptoms in these leaves were investigated. We used qRT-PCR to analyze the effect of different hormones on CsGH3.1 and CsGH3.6 expression in ‘Newhall’ leaves. The expression levels of both CsGH3.1 and CsGH3.6 were significantly induced by Xac in ‘Newhall’ leaves, compared with levels in Calamondin leaves. 1-naphthy acetic acid (NAA) increased the hypertrophy of infection sites in ‘Newhall’ leaves, while naphthyl-phthalamic acid (NPA) had no visible effect on lesion development. NAA hormone greatly improved expression of CsGH3.1 in ‘Newhall’, but not CsGH3.6. These results indicate that the auxin primary-response gene CsGH3.1 plays an important role in citrus susceptibility to Xac
    corecore