79,445 research outputs found

    Understanding Task Design Trade-offs in Crowdsourced Paraphrase Collection

    Full text link
    Linguistically diverse datasets are critical for training and evaluating robust machine learning systems, but data collection is a costly process that often requires experts. Crowdsourcing the process of paraphrase generation is an effective means of expanding natural language datasets, but there has been limited analysis of the trade-offs that arise when designing tasks. In this paper, we present the first systematic study of the key factors in crowdsourcing paraphrase collection. We consider variations in instructions, incentives, data domains, and workflows. We manually analyzed paraphrases for correctness, grammaticality, and linguistic diversity. Our observations provide new insight into the trade-offs between accuracy and diversity in crowd responses that arise as a result of task design, providing guidance for future paraphrase generation procedures.Comment: Published at ACL 201

    Possible TeV Source Candidates In The Unidentified EGRET Sources

    Get PDF
    We study the γ\gamma-ray emission from the pulsar magnetosphere based on outer gap models, and the TeV radiation from pulsar wind nebulae (PWNe) through inverse Compton scattering using a one-zone model. We showed previously that GeV radiation from the magnetosphere of mature pulsars with ages of ∼105−106\sim 10^5-10^6 years old can contribute to the high latitude unidentified EGRET sources. We carry out Monte Carlo simulations of γ\gamma-ray pulsars in the Galaxy and the Gould Belt, assuming the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics. We select from the simulation a sample of mature pulsars in the Galactic plane (∣b∣≤5∘|b|\leq 5^\circ) and in the high latitude (∣b∣>5∘|b|> 5^\circ) which could be detected by EGRET. The TeV flux from the pulsar wind nebulae of our simulated sample through the inverse Compton scattering by relativistic electrons on the microwave cosmic background and synchrotron seed photons are calculated. The predicted fluxes are consistent with the present observational constraints. We suggest that strong EGRET sources can be potential TeV source candidates for present and future ground-based TeV telescopes.Comment: Minor changes, MNRAS in pres

    Characterization Of Thermal Stresses And Plasticity In Through-Silicon Via Structures For Three-Dimensional Integration

    Get PDF
    Through-silicon via (TSV) is a critical element connecting stacked dies in three-dimensional (3D) integration. The mismatch of thermal expansion coefficients between the Cu via and Si can generate significant stresses in the TSV structure to cause reliability problems. In this study, the thermal stress in the TSV structure was measured by the wafer curvature method and its unique stress characteristics were compared to that of a Cu thin film structure. The thermo-mechanical characteristics of the Cu TSV structure were correlated to microstructure evolution during thermal cycling and the local plasticity in Cu in a triaxial stress state. These findings were confirmed by microstructure analysis of the Cu vias and finite element analysis (FEA) of the stress characteristics. In addition, the local plasticity and deformation in and around individual TSVs were measured by synchrotron x-ray microdiffraction to supplement the wafer curvature measurements. The importance and implication of the local plasticity and residual stress on TSV reliabilities are discussed for TSV extrusion and device keep-out zone (KOZ).Microelectronics Research Cente

    Modelling total solar irradiance since 1878 from simulated magnetograms

    Full text link
    We present a new model of total solar irradiance (TSI) based on magnetograms simulated with a surface flux transport model (SFTM) and the SATIRE (Spectral And Total Irradiance REconstructions) model. Our model provides daily maps of the distribution of the photospheric field and the TSI starting from 1878. We first calculate the magnetic flux on the solar surface emerging in active and ephemeral regions. The evolution of the magnetic flux in active regions is computed using a surface flux transport model fed with the observed record of sunspot group areas and positions. The magnetic flux in ephemeral regions is treated separately using the concept of overlapping cycles. To model the ephemeral region cycles, we assume that their length and amplitude are related to that of the sunspot cycles. We then use a version of the SATIRE model to compute the TSI. The area coverage and the distribution of different magnetic features as a function of time, which are required by SATIRE, are extracted from the simulated magnetograms and the modelled ephemeral region magnetic flux. Previously computed intensity spectra of the various types of magnetic features are employed. Our model reproduces the PMOD composite of TSI measurements starting from 1978 at daily and rotational timescales more accurately than the previous version of the SATIRE model computing TSI over this period of time. The simulated magnetograms provide a more realistic representation of the evolution of the magnetic field on the photosphere and also allow us to make use of information on the spatial distribution of the magnetic fields before the times when observed magnetograms were available. We find that the secular increase in TSI since 1878 is fairly stable to modifications of the treatment of the ephemeral region magnetic flux

    Some symmetry properties of spin currents and spin polarizations in multi-terminal mesoscopic spin-orbit coupled systems

    Full text link
    We study theoretically some symmetry properties of spin currents and spin polarizations in multi-terminal mesoscopic spin-orbit coupled systems. Based on a scattering wave function approach, we show rigorously that in the equilibrium state no finite spin polarizations can exist in a multi-terminal mesoscopic spin-orbit coupled system (both in the leads and in the spin-orbit coupled region) and also no finite equilibrium terminal spin currents can exist. By use of a typical two-terminal mesoscopic spin-orbit coupled system as the example, we show explicitly that the nonequilibrium terminal spin currents in a multi-terminal mesoscopic spin-orbit coupled system are non-conservative in general. This non-conservation of terminal spin currents is not caused by the use of an improper definition of spin current but is intrinsic to spin-dependent transports in mesoscopic spin-orbit coupled systems. We also show that the nonequilibrium lateral edge spin accumulation induced by a longitudinal charge current in a thin strip of \textit{finite} length of a two-dimensional electronic system with intrinsic spin-orbit coupling may be non-antisymmetric in general, which implies that some cautions may need to be taken when attributing the occurrence of nonequilibrium lateral edge spin accumulation induced by a longitudinal charge current in such a system to an intrinsic spin Hall effect.Comment: 11 pages, 6 figure

    Magnetization Losses in Multifilament Coated Superconductors

    Full text link
    We report the results of a study of the magnetization losses in experimental multifilament, as well as control (uniform), coated superconductors exposed to time-varying magnetic field of various frequencies. Both the hysteresis loss, proportional to the sweep rate of the applied magnetic field, and the coupling loss, proportional to the square of the sweep rate, have been observed. A scaling is found that allows us to quantify each of these contributions and extrapolate the results of the experiment beyond the envelope of accessible field amplitude and frequency. The combined loss in the multifilament conductor is reduced by about 90% in comparison with the uniform conductor at full field penetration at sweep rate as high as 3T/s

    Effect of Diethylenetriamine and Triethylamine sensitization on the critical diameter of Nitromethane

    Get PDF
    In this work, the critical diameter for detonation was measured for Nitromethane (NM) sensitized with two different amines: Diethylenetriamine (DETA) and Triethylamine (TEA). The critical diameter in glass and polyvinylchloride tubes is found to decrease rapidly as the amount of sensitizer is increased, then increase past a critical amount of sensitizer. Thus the critical diameter reaches a minimum at a critical concentration of sensitizer. It was also found that the critical diameter is lower with DETA than with TEA

    Thermomechanical Characterization And Modeling For TSV Structures

    Get PDF
    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente
    • …
    corecore