32,550 research outputs found

    Reversibility Checking for Markov Chains

    Get PDF
    In this paper, we present reversibility preserving operations on Markov chain transition matrices. Simple row and column operations allow us to create new reversible transition matrices and yield an easy method for checking a Markov chain for reversibility

    Spatio-Temporal Sentiment Hotspot Detection Using Geotagged Photos

    Full text link
    We perform spatio-temporal analysis of public sentiment using geotagged photo collections. We develop a deep learning-based classifier that predicts the emotion conveyed by an image. This allows us to associate sentiment with place. We perform spatial hotspot detection and show that different emotions have distinct spatial distributions that match expectations. We also perform temporal analysis using the capture time of the photos. Our spatio-temporal hotspot detection correctly identifies emerging concentrations of specific emotions and year-by-year analyses of select locations show there are strong temporal correlations between the predicted emotions and known events.Comment: To appear in ACM SIGSPATIAL 201

    Entropy production of cyclic population dynamics

    Full text link
    Entropy serves as a central observable in equilibrium thermodynamics. However, many biological and ecological systems operate far from thermal equilibrium. Here we show that entropy production can characterize the behavior of such nonequilibrium systems. To this end we calculate the entropy production for a population model that displays nonequilibrium behavior resulting from cyclic competition. At a critical point the dynamics exhibits a transition from large, limit-cycle like oscillations to small, erratic oscillations. We show that the entropy production peaks very close to the critical point and tends to zero upon deviating from it. We further provide analytical methods for computing the entropy production which agree excellently with numerical simulations.Comment: 4 pages, 3 figures and Supplementary Material. To appear in Phys. Rev. Lett.

    Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field

    Full text link
    The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure

    Thermomechanical Characterization And Modeling For TSV Structures

    Get PDF
    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente

    Fabrication and characterizations of proton-exchanged LiNbO3 waveguides fabricated by inductively coupled plasma technique

    Get PDF
    This Letter reports the use of an inductively coupled plasma technique for fabrication of proton-exchanged (PE) LiNbO3 (LN) waveguides. Planar and stripe waveguides have been formed in Y-cut LN which are difficult to obtain with the conventional molten acid method due to the occurrence of surface damage. Secondary ion mass spectrometry, scanning electron microscopy, and infrared absorption spectrum characterization results revealed that a uniform vertical PE profile with a single low order crystal phase has been directly obtained as a result of this unique process. X-ray photoelectron spectroscopy characterization of the treated surface revealed the existence of NbO as the cause for a sometimes darkened surface and confirms the ability to completely restore the surface to LN by oxygen plasma treatment. Atomic force microscopy measurement confirms that good surface quality has been maintained after regeneration of the surface to LN
    corecore