28,735 research outputs found

    Chandra View of DA 530: A Sub-Energetic Supernova Remnant with a Pulsar Wind Nebula?

    Get PDF
    Based on a Chandra ACIS observation, we report the detection of an extended X-ray feature close to the center of the remnant DA 530 with 5.3 sigma above the background within a circle of 20'' radius. This feature, characterized by a power-law with the photon index gamma=1.6+-0.8 and spatially coinciding with a nonthermal radiosource, most likely represents a pulsar wind nebula. We have further examined the spectrum of the diffuse X-ray emission from the remnant interior with a background-subtracted count rate of ~0.06 counts s^-1 in 0.3-3.5 keV. The spectrum of the emission can be described by a thermal plasma with a temperature of ~0.3-0.6 keV and a Si over-abundance of >~7 solar. These spectral characteristics, together with the extremely low X-ray luminosity, suggest that the remnant arises from a supernova with an anomalously low mechanical energy (<10^50 ergs). The centrally-filled thermal X-ray emission of the remnant may indicate an early thermalization of the SN ejecta by the circum-stellar medium. Our results suggest that the remnant is likely the product of a core-collapsed SN with a progenitor mass of 8-12 Msun. Similar remnants are probably common in the Galaxy, but have rarely been studied.Comment: 23 pages, 7 figures, accepted for publication in ApJ; complete the abstract on astro-ph and correct some typo

    Dirac particles' tunnelling from black rings

    Full text link
    Recent research shows that Hawking radiation can be treated as a quantum tunnelling process, and Hawking temperature of Dirac particles across the horizon of a black hole can be correctly recovered via fermions tunnelling method. In this paper, motivated by fermions tunnelling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunnelling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find as in black hole cases, fermions tunnelling can also result in correct Hawking temperatures for the rotating neutral, dipole and charged black rings.Comment: 16 pages, to appear in Phys. Rev.

    Numerically efficient formulation for time-domain electromagnetic-semiconductor co-simulation for Fast-Transient Systems

    Get PDF
    published_or_final_versio

    Demonstrating Additional Law of Relativistic Velocities based on Squeezed Light

    Full text link
    Special relativity is foundation of many branches of modern physics, of which theoretical results are far beyond our daily experience and hard to realized in kinematic experiments. However, its outcomes could be demonstrated by making use of convenient substitute, i.e. squeezed light in present paper. Squeezed light is very important in the field of quantum optics and the corresponding transformation can be regarded as the coherent state of SU(1; 1). In this paper, the connection between the squeezed operator and Lorentz boost is built under certain conditions. Furthermore, the additional law of relativistic velocities and the angle of Wigner rotation are deduced as well

    A CHF detection method based on deep learning with RR intervals

    Full text link
    © 2017 IEEE. There are extensive studies investigating congestive heart failure (CHF) detection based on heart rate variability. Although a high level of accuracy has been achieved, its robustness under different conditions is not guaranteed. To improve the robustness, we applied sparse auto-encoder-based deep learning algorithm in CHF detection with RR intervals. A total data size of 30,592 (5-min RR interval) was obtained from 72 healthy persons and 44 CHF patients. The deep learning algorithm first extracts unsupervised features using a sparse auto-encoder from raw RR intervals, then constructs a deep neural network model with various hidden nodes combinations. Results showed that the model achieved 72.41% accuracy. This demonstrated that RR intervals have potential in CHF detection but cannot fully reflect dynamic change in 24-h

    Back reaction, covariant anomaly and effective action

    Full text link
    In the presence of back reaction, we first produce the one-loop corrections for the event horizon and Hawking temperature of the Reissner-Nordstr\"om black hole. Then, based on the covariant anomaly cancelation method and the effective action technique, the modified expressions for the fluxes of gauge current and energy momentum tensor, due to the effect of back reaction, are obtained. The results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody at the temperature with quantum corrections, thus confirming the robustness of the covariant anomaly cancelation method and the effective action technique for black holes with back reaction.Comment: 17 page

    Novel low-nitrogen stress-responsive long non-coding RNAs (lncRNA) in barley landrace B968 (Liuzhutouzidamai) at seedling stage

    Get PDF
    Background: Reducing the dependence of crop production on chemical fertilizer with its associated costs, carbon footprint and other environmental problems is a challenge for agriculture. New solutions are required to solve this problem, and crop breeding for high nitrogen use efficiency or tolerance of low nitrogen availability has been widely considered to be a promising approach. However, the molecular mechanisms of high nitrogen use efficiency or low-nitrogen tolerance in crop plants are still to be elucidated, including the role of long non-coding RNAs (lncRNAs. Results: In this study, we identified 498 lncRNAs in barley (Hordeum vulgare) landrace B968 (Liuzhutouzidamai), of which 487 were novel, and characterised 56 that were responsive to low-nitrogen stress. For functional analysis of differentially-expressed lncRNAs, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of co-expressed and co-located protein-coding genes were analyzed, and interactions with annotated co-expressed protein coding genes or micro RNAs (miRNAs) were further predicted. Target mimicry prediction between differentially-expressed lncRNAs and miRNAs identified 40 putative target mimics of lncRNAs and 58 target miRNAs. Six differentially-expressed lncRNAs were further validated by qPCR, and one in particular showed consistent differential expression using both techniques. Expression levels of most of the lncRNAs were found to be very low, and this may be the reason for the apparent inconsistency between RNA-seq and qPCR data. Conclusions: The analysis of lncRNAs that are differentially-expressed under low-nitrogen stress, as well as their coexpressed or co-located protein coding genes and target mimics, could elucidate complex and hitherto uncharacterised mechanisms involved in the adaptation to low-nitrogen stress in barley and other crop plants

    Hawking radiation, W-infinity algebra and trace anomalies

    Full text link
    We apply the "trace anomaly method" to the calculation of moments of the Hawking radiation of a Schwarzschild black hole. We show that they can be explained as the fluxes of chiral currents forming a W-infinity algebra. Then we construct the covariant version of these currents and verify that up to order 6 they are not affected by any trace anomaly. Using cohomological methods we show that actually, for the fourth order current, no trace anomalies can exist. The results reported here are strictly valid in two dimensions.Comment: 22 pages, typos correcte
    corecore