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A Numerically Efficient Formulation for
Time-Domain Electromagnetic-Semiconductor

Cosimulation for Fast-Transient Systems

Quan Chen, Wim Schoenmaker, Guanhua Chen,
Lijun Jiang, and Ngai Wong

Abstract—We report recent progress in developing a nu-
merically efficient formulation for electromagnetic-technology
computer-aided design cosimulation for fast-transient computa-
tions. The difficulties underlying the currently existing transient
formulation stemming from the vector potential-scalar potential
(A-V) framework are analyzed. A time-domain electric field-
scalar potential (E-V) framework is then developed via equation
and variable transformations. This results in better-conditioned
systems that are friendly to iterative solutions at fast switching
times. Numerical examples show that the proposed E-V solver
renders a useful tool for addressing multidomain simulation.

Index Terms—Cosimulation, E-V framework, electromag-
netics, high frequency, TCAD, transient simulation.

I. Introduction

IN RECENT years, there has been a growing demand
for combining stand-alone electromagnetic (EM) solvers

and technology computer-aided design (TCAD) semiconductor
device simulators in mixed-signal, RF, and multidomain simu-
lation. This is because the simplification of semiconductors (to
conductors with equivalent conductivity) in linear EM analysis
and the neglect of magnetic effects in TCAD simulation have
become insufficient to capture the field-carrier interactions that
are getting stronger with increasing frequency and decreasing
signal level. For instance, the nonlinear interplay between fast-
varying EM fields and carrier flows in nonuniformly doped
substrates is a subtle but important problem for the allocation
of electrostatic discharge structures [1].

The EM-TCAD cosimulation essentially refers to a con-
current solution of the Maxwell’s equations that describe
the ubiquitous EM dynamics, and the transport equations
describing the charge carrier dynamics in semiconductors. A
widely tested EM-TCAD framework in the frequency domain
was proposed in [2] and [3]. The Maxwell’s equations are
formulated in terms of scalar potential V and vector potential
A to obtain a straightforward coupling with the drift and
diffusion semiconductor model. The A-V formulation has
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been translated into a series of tools [4], verified against
measurements with a number of industrial examples [5], [6],
and coupled with the quantum mechanical model to enable
multiscale simulation for emerging nanoelectronic devices [7],
[8]. Alternative EM-TCAD frameworks have also been re-
ported in [9] and [10].

Whereas the frequency-domain A-V solver has been devel-
oped in a rather advanced stage, the transient counterpart so far
has been less explored. Unlike the objective of obtaining small-
signal response in the frequency domain, the need of transient
EM-TCAD simulation comes from the desire to handle large-
signal response. A first implementation of time-domain A-V
solver was reported recently in [8] and [11]. Due to the
extended physical reality and its numerical treatment, five vari-
ables are used and solved simultaneously in the formulation.
The number of unknowns in each Newton iteration is thus five
to six times the number of nodes in the computational grid.
The solution process for industrial problems represented in
large linearized systems becomes a key concern.

Iterative methods are preferable for solving large sparse
linear systems. However, the time-domain A-V formula-
tion in [11] inherits one numerical shortcoming from the
frequency-domain counterpart. The iterative solution of the
linearized system tends to be increasingly inefficient as the
frequency grows beyond 50 GHz. The problem can be traced to
the significant off-diagonal blocks in the Jacobian matrix due
to the high frequency and metal conductivity. As a remedy, an
E-V formulation was developed in the frequency-domain [12],
relying on the variable transform (vector potential A →
electric field E) and an equation transform for the nodes
attached with metals (current continuity → gauge condition).
The transformations substantially reduce magnitudes of the
off-diagonal blocks at high frequencies and a remarkable
performance boost of iterative methods has been demonstrated.

In this letter, a time-domain E-V framework is developed for
the fast-transient EM-TCAD simulation. Although being based
on the similar variable and equation transformations with the
frequency-domain E-V method [12], the time-domain E-V
solver enables a large-signal coupled simulation at ultra-high-
frequencies, which is different from the small-signal analysis
in [12]. Furthermore, a new interpretation is provided in this
letter to explain the origin of the high-frequency breakdown
associated with the A-V solver, and how the E-V solver
prevents this numerical difficulty.

II. Time-Domain A-V Formulation

The complete system of equations of time-domain A-V
solver is laid out in (1) (with scaling)⎧⎪⎨

⎪⎩
1

ν
∇ · [εr (−∇V − �)] − ρ = 0, ρ = p − n + ND

1

ν
∇·
[
εr

(
−∇ ∂

∂t
V − ∂

∂t
�

)]
+∇·[σ (−∇V −�)]+∇·Jsd = 0

(1a)

∇ · Jn − ∂

∂t
n − R (n, p) = 0 (1b)

∇ · Jp +
∂

∂t
p + R (n, p) = 0 (1c)

∂

∂t
A − � = 0 (1d)

−Kεr

(
− ∂

∂t
�−∇ ∂

∂t
V

)
−K∇

(
εr

∂

∂t
V

)
+

[∇ × (∇ × A)−∇ (∇ · A)]−Kνσ (−∇V − �)−KνJsd = 0. (1e)
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The upper equation in (1a) is the conventional Gauss
law, and the lower one represents the current continuity for
the nodes attached with metals. Equations (1b) and (1c)
are the current continuity equations for electron and holes,
where Jsd is the total semiconductor current and R is the
net generation/recombination rate. A new variable, called
the pseudo-canonical momentum �=∂A/∂t, is introduced to
avoid the second-order time derivative acting on the vector
potential [11]. Equation (1e) represents a modified Maxwell–
Ampere (MA) equation that includes the subtraction of the
divergence of Lorentz gauge condition

∇ · A + Kεr

∂V

∂t
= 0 (2)

to eliminate the singularity of the curl–curl operator [12] by
conversion to a Laplacian form. K and ν are two dimensionless
scaling parameters that will be discussed later.

The system after spatial discretization can be assembled in
a matrix format as shown in (3). V1 and V2 are partitioned ac-
cording to the different governing equations in (1a). Similarly,
� is divided into �1 and �2 for the links attached without
and with metallic volumes, respectively. I denotes the identity
matrix with the appropriate dimension.

Equation (3) can be further condensed to a nonlinear dif-
ferential equation

Cẋ = −Gx − F (x) − b (4)

where C and G collect the linear dynamics in the system,
F collects the nonlinear dynamics (generally the nonlinear
semiconductor currents), and b is the source term.

In a temporal regime, (4) is generally discretized by a
backward differential formula (BDF). For simplicity, here we
employ the first-order BDF, i.e., the BE discretization. New-
ton’s method is employed to handle the nonlinear algebraic
system generated by BE. The linearized equation to be solved
at the k+1th Newton iteration of the n+1 time step is therefore(

JF +
C

h
+ G

)
�xk+1

n+1 =

−
(

F (xk
n+1) +

(
C

h
+ G

)
xk

n+1 − C

h
xn + bn+1

)
(5)

where JF = ∂F
∂x

∣∣
xk

n+1
is the partial derivatives of nonlinear

semiconductor currents and h is the time step size.

III. Analysis of Fast-Transient Breakdown

A slightly modified version of the generalized de Mari
scaling in [3] is applied to (1) to improve the numerical range
of the physical quantities that may differ by orders of magni-
tude. In particular, four independent scaling parameters, λ for
length, τ for time, ni for doping and carrier concentrations and
VT for scalar potentials, are pre-determined, from which the
remaining scaling parameters are derived from their physical
relation. The length scaling λ is usually chosen to be the
natural length scale of the problem under consideration to
render the matrix entries generated by differential operators
of magnitude O(1). The time scaling τ is selected according
to the natural time scale of the problem to make h/τ ∼ O(1).
The dimensionless parameters K and ν are defined by K =

μ0ε0(λ/τ)2 and ν = qniλ
2/(ε0Vt), respectively, with ε0 and μ0

being the vacuum permittivity and permeability.
Performance of the iterative solution of (5) depends on

the eigenvalue distribution of the Jacobian matrix J =(
∂F
∂x

∣∣
xk

n+1
+ C

h
+ G

)
. To further facilitate the analysis, we focus

on the contribution of the linear components (e.g., back-end
structures) to the Jacobian matrix by forming an M matrix
as in (6), which includes only the blocks related to (V, A, �).
The displacement currents on metal nodes/links can be omitted
compared with the conduction currents (σ � εr/ν). The
existence of semiconductor would generally not affect results
of the following analysis, and will be discussed at the end of
Section IV:

M =

⎡
⎢⎢⎢⎣

[− 1
ν
∇ · (εr∇)

−∇ · (σ∇)

]
0

[− 1
ν
∇ · εr

−∇ · σ

]

0 I −I[
K (εr∇ − ∇εr)

Kνσ∇
][∇2

∇2

] [
Kεr

Kνσ

]

⎤
⎥⎥⎥⎦ . (6)

Here the conductivity σ = σ0/sσ has been scaled by sσ = ε0ν/τ,
where σ0 is the real metal conductivity.

Similar to the frequency-domain counterpart [12], the time-
domain formula (6) has off-diagonal blocks depending on the
the large value of metal conductivity, which is unfavorable for
the generalized minimal residual (GMRES) convergence. This
numerical difficulty can be alleviated by further row (block)
scaling to make the matrix have approximately an equal row
(block) norm. The M matrix after row balancing becomes

M =

⎡
⎢⎢⎢⎣

[−∇ · (εr∇)
−∇ · (∇)

]
0

[−∇ · εr

−∇·
]

0 I −I[
K (εr∇ − ∇εr)

∇
][ ∇2

∇2/ (Kνσ)

] [
Kεr

1

]

⎤
⎥⎥⎥⎦ . (7)

It is evident from (7) that M has generally balanced blocks
except the ∇2/(Kνσ) one, which decreases linearly with the
reciprocal of τ, or the frequency of interest, since

Kνσ = μ0σ0
λ2

τ
∝ 1

τ
. (8)

While the ∇2/(Kνσ) term becomes smaller at fast transients,
the last and second rows in (7) become increasingly close to
each other (differing by only a divergence operator), rendering
the resultant Jacobian an ill-conditioning matrix. The matrix
will even become singular when the term ∇2/(Kσ) vanishes.
This intuitively explains the difficulty in an iterative solution
the A-V solver encounters when simulating systems with
rapid-varying dynamics.

An in-depth analysis can be conducted by looking at the
original unscaled physical system. As pointed out in [12], the
combination of the current continuity (9a) and the original MA
equation (9b) would lead to a redundant system. To eliminate
the redundancy, the divergence of the gauge condition is
subtracted from the original MA equation, resulting in (9b)
[or the scaled version in (1e)]

∇ ·
(

ε
∂E
∂t

+ σE + Jsd

)
= 0 (9a)

[∇ × (∇ × A) − ∇ (∇ · A)]−μ

(
σE + ε

∂E
∂t

+ Jsd

)
= 0. (9b)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
0

− 1
ν
∇ · (εr∇)

] [
0

− 1
ν
∇ · εr

]

I

I

I[
K (εr∇ − ∇εr)
K (εr∇ − ∇εr)

] [
Kεr

Kεr

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
V̇1

V̇2

]

ṅ

ṗ

Ȧ[
�̇1

�̇2

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[− 1
ν
∇ · (εr∇)

−∇ · (σ∇)

][
In

0

][−Ip

0

] [− 1
ν
∇ · εr

−∇ · σ

]

0
0

0 −I[
0

Kνσ∇
] [∇2

∇2

] [
0

Kνσ

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
V1
V2

]

n

p

A[
�1
�2

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
0

∇ · J̄sd

]

−∇ · J̄n + R

∇ · J̄p + R

0[−KνJ̄sd

−KνJ̄sd

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[−ND

0

]

0
0
0[
0
0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

The efficiency of this remedy depends on the magnitude
contrast between the first and the second term of (9b). Since
the surface integral

∫∫
�S

[∇ × (∇×) − ∇ (∇·)]ds gives an
O(1) magnitude in the spatial discretization, the magnitude
of the first term is O(A). The magnitude of the second term,
if on a metallic link, would be dominated by (the surface
integral of) the conduction current, which is on the order
of O(λ2μ0σ0E) (λ is selected to be the natural length scale
of the mesh). For typical materials μ0σ0∼O(1), and for fast
transients O(E)∼O( ∂A

∂t
)=O( A

τ
), where τ represents the natural

time scale of the problem. Then, the magnitude of the second
term will have a dependence on the ratio λ2/τ. When this ratio
is large, e.g., at high frequencies or with fast transients, the
Laplacian term in (9b) will be overwhelmed by the conduction
current, leaving the equation to represent nothing but a zero
total current on the link, and cause difficulty when solved
together with the node-wise current continuity equation (9a).
Since such magnitude imbalance occurs in the same equation
on the same unknown (A), any row or column scaling cannot
prevent (9b) from getting close to the current continuity as τ

decreases. From this perspective, the numerical difficulty of
the A-V formulation is generally scaling independent.

A question that follows immediately is, when the conduction
current term in (1e) will dominate the equation, or when Kνσ

will become large. One can see from (8) that the definition of
fast transient depends on the ratio of λ2/τ. When τ ≈ λ2 the
fast-transient breakdown starts to occur with the A-V formu-
lation. For μm-scale structures where λ ≈ 10−6, breakdown
starts to occur for τ ≈ 10−12, which roughly corresponds
to 50 GHz (τ ∼ 1/20 of period), consistent with finding in
the frequency domain in [12]. For nanoscale problems with
λ ≈ 10−9, τ can be up to 10−18, meaning that the A-V solver
will generally not encounter severe problems until 1017Hz.
In addition, if no metals are included in the simulation, the
redundancy problem can largely be avoided.

IV. Time-Domain E-V Formulation

We have revealed that the numerical problem of the A-
V solver for fast-transient systems results from the concur-
rent solution of the current continuity and the modified MA
equation in the metallic region. A natural remedy will hence
be replacing the current continuity in the metals [the lower
one in (1a)] by the gauge condition (2) as in [12]. It is a
valid equation transformation provided that it is only applied
on the nodes attached with metallic volumes, while keeping
the original Gauss’s law for the remaining nodes. This way,
redundancy is avoided even when the modified MA equation
collapses to the current continuity equation for fast transients.

Meanwhile, the comparable diagonal and off-diagonal
blocks in (7) are not desirable for fast convergence of iterative
methods, which is attributed to the A-V potential formulation

of Maxwell’s equations where the electric field E is separated
into V and � components but still used as an entity in
the expression of displacement current. Therefore, a variable
transformation E = −∇V − � is employed to minimize the
cross-coupling between V and � in the relevant equations.
The complete E-V equation system is laid out in (10)⎧⎨

⎩
1

ν
∇ · (εrE) − ρ = 0, ρ = p − n + ND

Kεr
∂
∂t

V + ∇ · A = 0
(10a)

∇ · Jn − ∂

∂t
n − R (n, p) = 0 (10b)

∇ · Jp +
∂

∂t
p + R (n, p) = 0 (10c)

∇V +
∂

∂t
A + E = 0 (10d)

−Kεr

∂

∂t
E + K∇

(
−ε

∂

∂t
V

)
+ [∇ × (∇ × A) − ∇ (∇ · A)]

−KνσE − KνJsd = 0. (10e)

Analogous to the analysis of A-V solver, the M matrix in
the E-V solver is constructed for (V, A, E) as

M =

⎡
⎢⎢⎢⎣

[
0

Kε

] [
0
∇·
] [

1
ν
∇ · εr

0

]

∇ I I[
K∇εr

K∇εr

][−∇2

−∇2

] [
Kεr

Kνσ

]

⎤
⎥⎥⎥⎦ . (11)

One additional merit of the E-V formulation lies in the
improved diagonal dominance of the last row of (11). The
large metal conductivity only appears at diagonals, which in
the meanwhile increases linearly with respect to the frequency
as Kσ ∼ 1/τ. The drawback of the E-V solver is that the
diagonal term Kεr in the gauge condition is small when
frequency is low, rendering high off-diagonal dominance that
affects the performance of iterative methods. Nevertheless,
this term increases quadratically with the reciprocal of the
time step, K ∼ 1/τ2. Therefore, the E-V solver will have
better performance in high-frequency simulations, similar to
its counterpart in the frequency domain.

The role that doped semiconductor plays depends largely
on the doping density. For typical doping densities used
in semiconductor devices, the equivalent conductivities of
semiconductor are approximately 10 ∼ 103S/m, four orders
smaller than that of metal (∼ 107S/m). This means that the
time step needs to be four orders smaller as well to cause the
same problem as in the metal case. Therefore, the inclusion
of a doped semiconductor would generally not hamper the
efficiency of the E-V solver. On the other hand, if degenerately
doped semiconductors with comparable conductivity with met-
als (e.g., polysilicon gate electrodes) are included, the same
numerical difficulty may still occur for the E-V solver, because
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Fig. 1. TSV structure. (a) 3-D view. (b) Equivalent circuit model. One
copper TSV with 4 × 4 μm2 cross-section is surrounded by an oxide layer
of 0.1 μm thickness, and embedded in a 16 × 10 μm2 silicon substrate. The
TSV and the substrate contact are separated by 5 μm. The substrate has a
thickness of 20 μm, and a uniform p-type doping of 2 × 1015 cm−1.

the current continuity and MA equations are solved again si-
multaneously in these metal-like regions. In this case, it might
be reasonable to treat such types of semiconductors as metals
in matrix assembling, provided that the charge carrier distri-
bution inside these semiconductors is not of research interest.

V. Numerical Results

The time-domain A-V and E-V solvers were both imple-
mented in MATLAB and tested with three structures. The first
one is a through-silicon via (TSV) structure motivated by a
recent work [13] to model the nonlinear coupling between
a TSV and an adjacent substrate contact through a doped
substrate. The geometric details and the equivalent circuit
model are shown in Fig. 1. The other two structures are a
substrate noise isolation structure and an 8-shaped inductor
in voltage controlled oscillator (VCO), whose details can be
found in [11] and [12], respectively. GMRES was used in the
iterative solutions, along with the threshold-based incomplete
LU (ILUT) preconditioner and the column approximate mini-
mum degree (COLAMD) permutation to reduce fill-ins in the
preconditioner. This combination represents the state of the art
in iterative solutions of large sparse linear systems. All tests
were conducted on a 3.2 GHz 32 Gb-RAM computer.

First, the validity of the E-V formulation is verified by
comparing with the A-V solver in Fig. 2 using the TSV
structure. A 25 GHz sinusoidal wave with the amplitude of
2 V (at 0 bias) is applied to the TSV and the induced voltage
is measured at the substrate contact, which represents the noise
coupling through the substrate. A constant step size h = 10−12s
and the direct linear solver (backslash in MATLAB) were used.
It is seen that the A-V and E-V curves overlap on the top
of each other, which is expected since no approximation is
introduced with the variable and equation transformations.

The TSV example can be also used to demonstrate the
usefulness of EM-TCAD cosimulation. It was reported in [13]
that the bias voltage can influence the electric characteristics of
TSV via modulating the width of depletion layer in substrate.
The increase of depletion layer width at depletion mode will
decrease the total TSV capacitance [CTSV in Fig. 1(b)], which
in turn reduces the strength of substrate coupling. Fig. 3 shows
the induced voltage with the same sinusoidal input as above
but with different DC biases. When a bias of DC= − 4V

Fig. 2. Induced voltage in the TSV structure calculated by A-V and E-V
solvers.

Fig. 3. Induced voltage in the TSV structure for different bias voltages and
with equivalent conductivity model.

is applied, the TSV will stay in accumulation mode during
the whole simulation, rendering a roughly constant CTSV

equal to the oxide capacitance and an approximately linear
output response. At a DC=0V bias, however, the input voltage
changes the TSV capacitance over time during the simulation
and induces nonlinear distortion in output voltage (the falling
edge). For further comparisons, we also simulate the structure
using an equivalent conductivity model (σeq = 24S/m) for
the silicon substrate. Again two different biases were applied.
The two simulated waveforms are in phase with each other
and the EM-TCAD results with −4V bias, indicating that
the equivalent conductivity model cannot capture the voltage-
dependence of TSV capacitance on applied voltage. This
effects will be more significant at high frequencies when more
power leakage occurs via the capacitive substrate path.

The GMRES performance of the A-V and the E-V solvers
with different step sizes are compared in Table I. The cor-
responding frequency range is roughly 100 MHz∼100 THz.
The same COLAMD+ILUT(10−3)+GMRES combo is applied
in all cases. tpre denotes the time for constructing the ILUT
preconditioner. tGMRES and Nit are the total time of GMRES
and the number of iterations required to achieve the tolerance
of 10−8, respectively. Symbol − indicates failure in computing
preconditioner or getting convergence within 300 iterations

As demonstrated in Table I, the numerical systems arising
from the A-V formulation are favorable for iterative solutions
for slow-transient systems. As the necessary time step de-
creases, the convergence rate of GMRES continuously slows
down and failures occur for extremely small step sizes. The
E-V solver behaves in an opposite manner. The GMRES
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TABLE I

Performance of Iterative Solution in A-V and E-V Solvers

Case Matrix Size h
A-V E-V

tpre tGMRES Nit tpre tGMRES Nit

1e-09 2.11 0.58 15 14.14 28.61 164

TSV 18 599
1e-11 2.59 0.66 16 11.09 2.52 19
1e-13 9.63 18.58 176 10.64 2.34 15
1e-15 – – – 4.77 3.05 9
1e-09 5.91 9.75 86 – – –

SUB 41 368
1e-11 7.41 12.91 96 15.89 4.65 19
1e-13 18.72 84.35 298 16.88 5.01 20
1e-15 – – – 5.87 1.29 11
1e-09 59.61 1.59 3 – – –

VCO 149 898
1e-11 649.65 583.87 195 834.23 356.77 87
1e-13 – – – 461.23 281.39 56
1e-15 – – – 180.94 236.49 52

Fig. 4. Eigenvalue distribution of A-V solver with different step sizes
(preconditioned Jacobian matrix U−1L−1M of the TSV case).

Fig. 5. Eigenvalue distribution of E-V solver with different step sizes
(preconditioned Jacobian matrix U−1L−1M of the TSV case).

convergence is slow at lower frequencies. For systems with
fast-varying dynamics, however, the E-V solver outperforms
the A-V solver substantially, suggesting that the E-V solver
will be a valuable tool for EM-TCAD coanalysis in RF or an
even higher frequency range. The convenient switch between
A-V and E-V solvers [12] also enables a wide-band simulation
across the preferred regions of both solvers.

Spectral analysis is further conducted to explain the
frequency-dependent behaviors of A-V and E-V solvers in
Figs. 4 and 5. The eigenvalues of the preconditioned Jacobian
are shown for different step sizes. ILUT (10−5) is used to en-

sure that preconditioners can be constructed for all step sizes.
The eigenvalues in the A-V solver cluster tightly around the
unity at slow transients, but spread away at fast transients. The
smaller is the step size, the more outlying eigenvalues appear,
indicating a poor GMRES convergence rate. The spectrum of
E-V solver follows a reversed trend. The eigenvalues are much
more clustered for small time steps than for large time steps,
which is consistent with the observations in Table I.

VI. Conclusion

We revealed that the time-domain EM-TCAD cosimulation
based upon the existing A-V formula will encounter numerical
difficulty when simulating metallic structures at fast switching
times. An E-V formulation was developed by equation and
variable transformations to improve the conditioning of the
numerical systems and thus to enhance the efficiency of
iterative solvers. It was demonstrated that the E-V solver
leads to a significant speedup for fast-transient systems, and
would, therefore, be a useful tool for multidomain simulation
involving fast transients.
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