894 research outputs found
Magic wavelengths for the 6s^2\,^1S_0-6s6p\,^3P_1^o transition in ytterbium atom
The static and dynamic electric-dipole polarizabilities of the 6s^2\,^1S_0
and 6s6p\,^3P_1^o states of Yb are calculated by using the relativistic ab
initio method. Focusing on the red detuning region to the
6s^2\,^1S_0-6s6p\,^3P_1^o transition, we find two magic wavelengths at
1035.7(2) nm and 612.9(2) nm for the 6s^2\,^1S_0-6s6p\,^3P_1^o, M_J=0
transition and three magic wavelengthes at 1517.68(6) nm, 1036.0(3) nm and
858(12) nm for the 6s^2\,^1S_0-6s6p\,^3P_1^o, M_J=\pm1 transitions. Such
magic wavelengths are of particular interest for attaining the
state-insensitive cooling, trapping, and quantum manipulation of neutral Yb
atom.Comment: 13 pages, 3 figure
Onsite data processing and monitoring for the Daya Bay Experiment
The Daya Bay Reactor Neutrino Experiment started running on September 23,
2011. The offline computing environment, consisting of 11 servers at Daya Bay,
was built to process onsite data. With current computing ability, onsite data
processing is running smoothly. The Performance Quality Monitoring system (PQM)
has been developed to monitor the detector performance and data quality. Its
main feature is the ability to efficiently process multi-data-stream from three
experimental halls. The PQM processes raw data files from the Daya Bay data
acquisition system, generates and publishes histograms via a graphical web
interface by executing the user-defined algorithm modules, and saves the
histograms for permanent storage. The fact that the whole process takes only
around 40 minutes makes it valuable for the shift crew to monitor the running
status of all the sub-detectors and the data quality
Tumor mutation burden associated with miRNA-gene interaction outcome mediates the survival of patients with liver hepatocellular carcinoma
Tumor mutation burden (TMB) is associated with immunogenic responses and the survival of cancer patients. This study demonstrates how TMB levels impact the immune-related cells, genes, and miRNAs, and how miRNA/gene interactions respond to variations in the survival rate of patients with liver hepatocellular carcinoma (LIHC). LIHC patients were divided into two groups, either a low TMB (< median) or a high TMB (≥ median) group. We found that high TMB plays a positive role in immune-mediated infiltration, generating more CD4 T-cells and memory B cells. Among the 21 immune genes that altered significantly, only C9orf24 and CYP1A1 were expected to up-regulate in LIHC patients with high TMB. A total of 19 miRNAs, which regulate various functional pathways, were significantly altered in patients with LIHC. One of the miRNA/gene pair, hsa-miR-33a/ALDH1A3 was significantly associated with the survival rate of LIHC patients. Our results suggest that LIHC patients with high TMB can be treated more effectively with immunotherapy
MiRNA-145 increases therapeutic sensibility to gemcitabine treatment of pancreatic adenocarcinoma cells.
Pancreatic adenocarcinoma is one of the most leading causes of cancer-related deaths worldwide. Although recent advances provide various treatment options, pancreatic adenocarcinoma has poor prognosis due to its late diagnosis and ineffective therapeutic multimodality. Gemcitabine is the effective first-line drug in pancreatic adenocarcinoma treatment. However, gemcitabine chemoresistance of pancreatic adenocarcinoma cells has been a major obstacle for limiting its treatment effect. Our study found that p70S6K1 plays an important role in gemcitabine chemoresistence. MiR-145 is a tumor suppressor which directly targets p70S6K1 for inhibiting its expression in pancreatic adenocarcinoma, providing new therapeutic scheme. Our findings revealed a new mechanism underlying gemcitabine chemoresistance in pancreatic adenocarcinoma cells
Deficiency of Mkrn2 causes abnormal spermiogenesis and spermiation, and impairs male fertility.
Although recent studies have shed insights on some of the potential causes of male infertility, new underlining molecular mechanisms still remain to be elucidated. Makorin-2 (Mkrn2) is an evolutionarily conserved gene whose biological functions are not fully known. We developed an Mrkn2 knockout mouse model to study the role of this gene, and found that deletion of Mkrn2 in mice led to male infertility. Mkrn2 knockout mice produced abnormal sperms characterized by low number, poor motility, and aberrant morphology. Disruption of Mkrn2 also caused failure of sperm release (spermiation failure) and misarrangement of ectoplasmic specialization (ES) in testes, thus impairing spermiogenesis and spermiation. To understand the molecular mechanism, we found that expression of Odf2, a vital protein in spermatogenesis, was significantly decreased. In addition, we found that expression levels of Odf2 were decreased in Mkrn2 knockout mice. We also found that MKRN2 was prominently expressed in the sperm of normal men, but was significantly reduced in infertile men. This result indicates that our finding is clinically relevant. The results of our study provided insights into a new mechanism of male infertility caused by the MKRN2 downregulation
Strategy for Mitigating Antibiotic Resistance by Biochar and Hyperaccumulators in Cadmium and Oxytetracycline Co-contaminated Soil
Publisher Copyright: © 2021 The Authors. Published by American Chemical SocietyThe global prevalence of antibiotic resistance genes (ARGs) is of increasing concern as a serious threat to ecological security and human health. Irrigation with sewage and farmland application of manure or biosolids in agricultural practices introduce substantial selective agents such as antibiotics and toxic metals, aggravating the transfer of ARGs from the soil environment to humans via the food chain. To address this issue, a hyperaccumulator (Sedum plumbizincicola) combined with biochar amendment was first used to investigate the mitigation of the prevalence of ARGs in cadmium and oxytetracycline co-contaminated soil by conducting a pot experiment. The addition of biochar affected the distribution of ARGs in soil and plants differently by enhancing their prevalence in the soil but restraining transmission from the soil to S. plumbizincicola. The planting of S. plumbizincicola resulted in an increase in ARGs in the soil environment. A structural equation model illustrated that mobile genetic elements played a dominant role in shaping the profile of ARGs. Taken together, these findings provide a practical understanding for mitigating the prevalence of ARGs in this soil system with complex contamination and can have profound significance for agricultural management in regard to ARG dissemination control.Peer reviewe
MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma.
Therapeutic applications of microRNAs (miRNAs) in RAS-driven glioma were valuable, but their specific roles and functions have yet to be fully elucidated. Here, we firstly report that miR-143 directly targets the neuroblastoma RAS viral oncogene homolog (N-RAS) and functions as a tumor-suppressor in glioma. Overexpression of miR-143 decreased the expression of N-RAS, inhibited PI3K/AKT, MAPK/ERK signaling, and attenuated the accumulation of p65 in nucleus of glioma cells. In human clinical specimens, miR-143 was downregulated where an adverse with N-RAS expression was observed. Furthermore, overexpression of miR-143 decreased glioma cell migration, invasion, tube formation and slowed tumor growth and angiogenesis in a manner associated with N-RAS downregulation in vitro and in vivo. Finally, miR-143 also sensitizes glioma cells to temozolomide (TMZ),the first-line drug for glioma treatment. Taken together, for the first time, our results demonstrate that miR-143 plays a significant role in inactivating the RAS signaling pathway through the inhibition of N-RAS, which may provide a novel therapeutic strategy for treatment of glioma and other RAS-driven cancers
Estrogen regulates miRNA expression: implication of estrogen receptor and miR-124/AKT2 in tumor growth and angiogenesis.
It is currently known that estrogen plays an important role in breast cancer (BC) development, but the underlying molecular mechanism remains to be elucidated. Accumulating evidence has revealed important roles of microRNAs in various kinds of human cancers, including BC. In this study, we found that among the microRNAs regulated by estrogen, miR-124 was the most prominent downregulated miRNA. miR-124 was downregulated by estradiol (E2) treatment in estrogen receptor (ER) positive BC cells, miR-124 overexpression suppressed cell proliferation, migration and invasion in BC cells; while the suppression of miR-124 using Anti-miR-124 inhibitor had opposite cellular functions. Under the E2 treatment, miR-124 had stronger effect to inhibit cellular functions in MCF7 cells than that in MDA-MB-231 cells. In addition, we identified that ERα, but not ERβ, was required for E2-induced miR-124 downregulation. Furthermore, AKT2, a known oncogene, was a novel direct target of miR-124. AKT2 expression levels were inversely correlated with miR-124 expression levels in human breast cancer specimens. AKT2 was overexpressed in BC specimens, and its expression levels were much higher in ERα positive cancer tissues than those ERα negative cancer tissues. Consistent with miR-124 suppression, E2 treatment increased AKT2 expression levels in MCF7 cells via ERα. Finally, overexpression of miR-124 in MCF7 cells significantly suppressed tumor growth and angiogenesis by targeting AKT2. Our results provide a mechanistic insight into a functional role of new ERα/miR-124/AKT2 signaling pathway in BC development. miR-124 and AKT2 may be used as biomarkers for ERα positive BC and therapeutic effect in the future
- …