652 research outputs found
Microscopic theory of quantum anomalous Hall effect in graphene
We present a microscopic theory to give a physical picture of the formation
of quantum anomalous Hall (QAH) effect in graphene due to a joint effect of
Rashba spin-orbit coupling and exchange field . Based on a
continuum model at valley or , we show that there exist two distinct
physical origins of QAH effect at two different limits. For ,
the quantization of Hall conductance in the absence of Landau-level
quantization can be regarded as a summation of the topological charges carried
by Skyrmions from real spin textures and Merons from \emph{AB} sublattice
pseudo-spin textures; while for , the four-band low-energy
model Hamiltonian is reduced to a two-band extended Haldane's model, giving
rise to a nonzero Chern number at either or . In the
presence of staggered \emph{AB} sublattice potential , a topological phase
transition occurs at from a QAH phase to a quantum valley-Hall phase. We
further find that the band gap responses at and are different when
, , and are simultaneously considered. We also show that the
QAH phase is robust against weak intrinsic spin-orbit coupling ,
and it transitions a trivial phase when
. Moreover, we use a tight-binding
model to reproduce the ab-initio method obtained band structures through doping
magnetic atoms on and supercells of graphene, and explain
the physical mechanisms of opening a nontrivial bulk gap to realize the QAH
effect in different supercells of graphene.Comment: 10pages, ten figure
Stabilizing topological phases in graphene via random adsorption
We study the possibility of realizing topological phases in graphene with
randomly distributed adsorbates. When graphene is subjected to periodically
distributed adatoms, the enhanced spin-orbit couplings can result in various
topological phases. However, at certain adatom coverages, the intervalley
scattering renders the system a trivial insulator. By employing a finite-size
scaling approach and Landauer-B\"{u}ttiker formula, we show that the
randomization of adatom distribution greatly weakens the intervalley
scattering, but plays a negligible role in spin-orbit couplings. Consequently,
such a randomization turns graphene from a trivial insulator into a topological
state.Comment: 5 pages and 3 figure
Synergetic Control of Power Converters for Pulse Current Charging of Advanced Batteries From a Fuel Cell Power Source
This paper presents a synergetic controller for pulse current charging of advanced batteries from a fuel cell power source. Pulse current charging protocol that has been shown to have many advantages over the traditional constant current/constant voltage protocol is applied in a fuel cell powered battery-charging station to reduce the total charging time. Strong nonlinearity and dynamics exist in such systems. In this paper, the synergetic control approach is applied to regulate the buck converters that control the pulse charging currents to the many batteries. A practical synergetic controller to coordinate pulse current charging of the battery is synthesized and discussed. It provides asymptotic stability with respect to the required operating modes, invariance to load variations, and robustness to variation of the input and converter parameters. The synergetic controller is then implemented in Simulink. The dynamic characteristics of the synergetic controller are studied and compared with PI controller by conducting system simulation and experimental tests. Simulation and experiment results show the synergetic controller is robust for such nonlinear dynamic system and achieves better performance than the standard PI controller
Two-Dimensional Topological Insulator State and Topological Phase Transition in Bilayer Graphene
We show that gated bilayer graphene hosts a strong topological insulator (TI)
phase in the presence of Rashba spin-orbit (SO) coupling. We find that gated
bilayer graphene under preserved time-reversal symmetry is a quantum valley
Hall insulator for small Rashba SO coupling , and
transitions to a strong TI when ,
where and are respectively the interlayer potential and tunneling
energy. Different from a conventional quantum spin Hall state, the edge modes
of our strong TI phase exhibit both spin and valley filtering, and thus share
the properties of both quantum spin Hall and quantum valley Hall insulators.
The strong TI phase remains robust in the presence of weak graphene intrinsic
SO coupling.Comment: 5 pages and 4 figure
Control Strategies for Active Power Sharing in a Fuel-Cell-Powered Battery-Charging Station
This paper presents an effective system design for a fuel-cell-powered battery-charging station and three control strategies for active power sharing among the batteries. This battery-charging station allows multiple batteries to be simultaneously charged. Three control strategies were investigated to coordinate the active power distribution among the battery-charging branches. The baseline control strategy Was equal rate charging. Two advanced control strategies, proportional rate charging and pulse current charging, were compared to the baseline strategy. These control strategies were realized in MaTLaB/Simulink, and the current and voltage regulations were implemented using the classical proportional-integral control approach. The system simulation was conducted in the Virtual Test Bed by embedding Simulink objects of the controller and co-simulating with MaTLaB. The experimental tests were performed by compiling Simulink codes of the controller and downloading to the dSPaCE platform to control real hardware. The simulation and experimental results are given. Experimental tests validate these control strategies
Topological phases in gated bilayer graphene: Effects of Rashba spin-orbit coupling and exchange field
We present a systematic study on the influence of Rashba spin-orbit coupling,
interlayer potential difference and exchange field on the topological
properties of bilayer graphene. In the presence of only Rashba spin-orbit
coupling and interlayer potential difference, the band gap opening due to
broken out-of-plane inversion symmetry offers new possibilities of realizing
tunable topological phase transitions by varying an external gate voltage. We
find a two-dimensional topological insulator phase and a quantum valley
Hall phase in -stacked bilayer graphene and obtain their effective
low-energy Hamiltonians near the Dirac points. For stacking, we do not
find any topological insulator phase in the presence of large Rashba spin-orbit
coupling. When the exchange field is also turned on, the bilayer system
exhibits a rich variety of topological phases including a quantum anomalous
Hall phase, and we obtain the phase diagram as a function of the Rashba
spin-orbit coupling, interlayer potential difference, and exchange field.Comment: 15 pages, 17figures, and 1 tabl
The basic construction from the conditional expectation on the quantum double of a finite group
summary:Let be a finite group and a subgroup. Denote by (or ) the crossed product of and (or ) with respect to the adjoint action of the latter on the former. Consider the algebra generated by and , where we regard as an idempotent operator on for a certain conditional expectation of onto . Let us call the basic construction from the conditional expectation . The paper constructs a crossed product algebra , and proves that there is an algebra isomorphism between and
- …