26 research outputs found

    DavarOCR: A Toolbox for OCR and Multi-Modal Document Understanding

    Full text link
    This paper presents DavarOCR, an open-source toolbox for OCR and document understanding tasks. DavarOCR currently implements 19 advanced algorithms, covering 9 different task forms. DavarOCR provides detailed usage instructions and the trained models for each algorithm. Compared with the previous opensource OCR toolbox, DavarOCR has relatively more complete support for the sub-tasks of the cutting-edge technology of document understanding. In order to promote the development and application of OCR technology in academia and industry, we pay more attention to the use of modules that different sub-domains of technology can share. DavarOCR is publicly released at https://github.com/hikopensource/Davar-Lab-OCR.Comment: Short paper, Accept by ACM MM202

    Coal Pillar Size Determination and Surrounding Rock Control for Gob-Side Entry Driving in Deep Soft Coal Seams

    No full text
    In response to the large-scale instability failure problem of designing coal pillars and support systems for gob-side entry driving (GSED) in high-stress soft coal seams in deep mines, the main difficulties in the surrounding rock control of GSED were analyzed. The relationship between the position of the main roof breaking line, together with the width of the limit equilibrium zone and a reasonable size for the coal pillar, were quantified through theoretical calculations. The theoretical calculations showed that the maximum and minimum widths of the coal pillar are 8.40 m and 5.47 m, respectively. A numerical simulation was used to study the distribution characteristics and evolution laws of deviatoric stress and plastic failure fields in the GSED surrounding rock under different coal pillar sizes. Theoretical analysis, numerical simulation, and engineering practice were comprehensively applied to determine a reasonable size for narrow coal pillars for GSED in deep soft coal seams, which was 6.5 m. Based on the 6.5 m coal pillar size, the distribution of deviatoric stress and plastic zones in the surrounding rock of the roadway, at different positions of the advanced panel during mining, was simulated, and the range of roadway strengthening supports for the advanced panel was determined as 25 m. The plasticization degree of the roof, entity coal and coal pillar, and the boundary line position of the peak deviatoric stress zone after the stability of the excavation were obtained. Drilling crack detection was conducted on the surrounding rock of the GSED roof and rib, and the development range and degree of the crack were obtained. The key areas for GSED surrounding rock control were clarified. Joint control technology for surrounding rock is proposed, which includes a combination of a roof channel steel anchor beam mesh, a rib asymmetric channel steel truss anchor cable beam mesh, a grouting modification in local fractured areas and an advanced strengthening support with a single hydraulic support. The engineering practice showed that the selected 6.5 m size for narrow coal pillars and high-strength combined reinforcement technology can effectively control large deformations of the GSED surrounding rock

    Mechanism and key parameters of stress load-off by innovative asymmetric hole-constructing on the two sides of deep roadway

    No full text
    Abstract Traditional dense large-diameter borehole stress load-off techniques reduce the stress levels in the shallow surrounding rock, weaken the bearing capacity of the shallow surrounding rock, and greatly deteriorate the shallow surrounding rock strength and supporting structure, which is not conducive to maintaining the long-term stability of the roadway. Therefore, to address the control problem for the pronounced extrusion deformation in the two sides of a roadway and the overall outward movement of the shallow surrounding rock supported by the sides bolts and anchor cables, as well as to comprehensively consider the on-site construction conditions of the two sides of a test roadway, stress load-off technology for asymmetric hole construction on the two sides of a roadway is proposed. The asymmetric stress load-off technique is a new method; while the shallow surrounding rock of the roadway sides is strongly anchored via a full anchor cable support form, a group of large stress load-off holes near the deep stress peak line of the roadway sides is excavated to relieve pressure and protect the roadway. This technology can transfer the peak stress area of the roadway side deeper into f the surrounding rock without deteriorating the shallow surrounding rock strength and damaging the supporting structure. A numerical simulation analysis of asymmetric stress load-off on the two sides of the roadway was performed, the stress load-off effect evaluation index was established, and the optimal field construction parameters were obtained. The stress load-off parameters obtained from the study are applicable to field engineering practice. Mine pressure data reveal that the test roadway remains intact and stable during the use period when the asymmetric stress load-off technique is adopted

    Contrasting Effects of Sediment Microbial Fuel Cells (SMFCs) on the Degradation of Macrophyte Litter in Sediments from Different Areas of a Shallow Eutrophic Lake

    No full text
    Eutrophication is one of the major ecological problems of our era. It accelerates the growth of aquatic plant and algae, eventually leading to ecological deterioration. Based on a 700-day lab experiment, this paper investigated the contrasting effects of sediment microbial fuel cells (SMFCs) on the removal of macrophyte litter in a macrophyte-dominated area and an algae-dominated area from two bay areas of a shallow eutrophic lake. The results revealed that the removal efficiencies of total organic carbon increased by 14.4% in the macrophyte-dominated area and 7.8% in the algae-dominated area. Moreover, it was found that sediment samples from the macrophyte-dominated area became more humified and had a higher electricity generation compared to the sediment samples from the algae-dominated area. Pyrosequencing analysis further determined that SMFC promoted more aromatic compound-degrading bacteria growth in sediments from the macrophyte-dominated area than from the algae-dominated area. Our study demonstrated that SMFC could enhance organic matter degradation, especially plant litter degradation, but this influence showed different from sediment sources. Thus, SMFC is capable of providing a useful strategy for delaying the terrestrialization of lakes areas suffering from eutrophication

    Stability analysis and control technology of gob-side entry retaining with double roadways by filling with high-water material in gently inclined coal seam

    No full text
    To ameliorate the defects of insufficient support resistance of traditional roadside filling bodies for gob-side entry retaining (GER), overcome the inability to adapt to the deformation of surrounding rock, and isolate the goaf effectively, a new type of high-water material as a roadside filling body for GER technology with double roadways was proposed. The instability analysis and control technology of GER with double roadways by filling high-water material into a gently inclined coal seam were studied. The basic mechanical properties of the new high-water material were investigated through laboratory experiments, and their main advantages were identified. The reasonable width of the roadside filling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations. The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations, and the failure range of GER by filling with high-water material was revealed. Based on this, a coupling control technology of anchor cables and bolts + single props + metal mesh + anchor bolts is proposed. Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock, the results demonstrate that GER with double roadways by filling with a 1.8-m-wide high-water material has a good control effect. The above research will play an active role in promoting the application of high-water materials in GER roadside filling.Applied Science, Faculty ofNon UBCCivil Engineering, Department ofReviewedFacultyResearche

    Assessment of Hemodynamics in a Rat Model of Liver Cirrhosis with Precancerous Lesions Using Multislice Spiral CT Perfusion Imaging

    Get PDF
    Rationale and Objectives. To develop an optimal scanning protocol for multislice spiral CT perfusion (CTP) imaging to evaluate hemodynamic changes in liver cirrhosis with diethylnitrosamine- (DEN-) induced precancerous lesions. Materials and Methods. Male Wistar rats were randomly divided into the control group (n=80) and the precancerous liver cirrhosis group (n=40). The control group received saline injection and the liver cirrhosis group received 50 mg/kg DEN i.p. twice a week for 12 weeks. All animals underwent plain CT scanning, CTP, and contrast-enhanced CT scanning. Scanning parameters were optimized by adjusting the diatrizoate concentration, the flow rate, and the delivery time. The hemodynamics of both groups was further compared using optimized multislice spiral CTP imaging. Results. High-quality CTP images were obtained with following parameters: 150 kV; 150 mAs; 5 mm thickness, 5 mm interval; pitch, 1; matrix, 512×512; and FOV, 9.6 cm. Compared to the control group, the liver cirrhosis group had a significantly increased value of the hepatic arterial fraction and the hepatic artery perfusion (P<0.05) but significantly decreased hepatic portal perfusion and mean transit time (P<0.05). Conclusion. Multislice spiral CTP imaging can be used to evaluate the hemodynamic changes in the rat model of liver cirrhosis with precancerous lesions

    New Technology of Pressure Relief Control in Soft Coal Roadways with Deep, Violent Mining and Large Deformation: A Key Study

    No full text
    Previous studies have shown that the influence of deep dynamic pressure on the surrounding rock control of a coal roadway is one of the difficulties in mine roadway support. Based on the investigation of the headgate 11231 in a coal mine, this study analyzes the damage characteristics of coal roadway surrounding rock affected by deep dynamic pressure, expounds on the difficulties of controlling the roadway surrounding rock, and creatively proposes a cooperative control technology of external anchor–internal unloading for regulating large deformation of roadways. The vertical stress distribution and transfer law of surrounding rock with different hole-making depths, spacing, and lengths after roadway excavation were simulated and studied, and an appropriate parameter range of hole-making space in the stage without dynamic pressure influence was obtained. Considering the influence of mining dynamic pressure, the surrounding rock pressure relief effect of each optimized hole-making parameter was analyzed. In addition, the optimal hole-making parameters (the hole-making depth, spacing, and length were 8 m, 3.2 m, and 3 m, respectively) that can effectively reduce the high stress of roadway shallow surrounding rock in two stages (without and with dynamic pressure) and ensure integrity of the shallow surrounding rock were obtained. The actual field application shows that the new technology can reduce the higher rib deformation by approximately 850 mm and achieve a good surrounding rock control effect. The research and practice show that the pressure relief control for soft coal roadways with deep, violent mining and large deformation has achieved success, providing technical support for the maintenance of the same type of roadway
    corecore