46,286 research outputs found
Size dependence of second-order hyperpolarizability of finite periodic chain under Su-Schrieffer-Heeger model
The second hyperpolarizability of
double-bond finite chain of trans-polyactylene is analyzed using the
Su-Schrieffer-Heeger model to explain qualitative features of the
size-dependence behavior of . Our study shows that is
{\it nonmonotonic} with and that the nonmonotonicity is caused by the
dominant contribution of the intraband transition to in polyenes.
Several important physical effects are discussed to reduce quantitative
discrepancies between experimental and our resultsComment: 3 figures, 1 tabl
Thermopower Oscillation Symmetries in a Double-Loop Andreev Interferrometer
Andreev interferometers, normal metal wires coupled to superconducting loops,
display phase coherent changes as the magnetic flux through the superconducting
loops is altered. Properties such as the electronic and thermal conductance of
these devices have been shown to oscillate symmetrically about zero with a
period equal to one superconducting flux quantum, . However, the
thermopower of these devices can oscillate symmetrically or antisymmetrically
depending on the geometry of the sample, a phenomenon not well understood
theoretically. Here we report on thermopower measurements of a double-loop
Andreev interferometer where two Josephson currents in the normal metal wire
may be controlled independently. The amplitude and symmetries of the observed
thermopower oscillations may help to illuminate the unexplained dependence of
oscillation symmetry on sample geometry.Comment: 6 Pages, 5 figures, to appear in Physica
The Nature of Quantum Hall States near the Charge Neutral Dirac Point in Graphene
We investigate the quantum Hall (QH) states near the charge neutral Dirac
point of a high mobility graphene sample in high magnetic fields. We find that
the QH states at filling factors depend only on the perpendicular
component of the field with respect to the graphene plane, indicating them to
be not spin-related. A non-linear magnetic field dependence of the activation
energy gap at filling factor suggests a many-body origin. We therefore
propose that the and states arise from the lifting of the spin
and sub-lattice degeneracy of the LL, respectively.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Magnetization Losses in Multifilament Coated Superconductors
We report the results of a study of the magnetization losses in experimental
multifilament, as well as control (uniform), coated superconductors exposed to
time-varying magnetic field of various frequencies. Both the hysteresis loss,
proportional to the sweep rate of the applied magnetic field, and the coupling
loss, proportional to the square of the sweep rate, have been observed. A
scaling is found that allows us to quantify each of these contributions and
extrapolate the results of the experiment beyond the envelope of accessible
field amplitude and frequency. The combined loss in the multifilament conductor
is reduced by about 90% in comparison with the uniform conductor at full field
penetration at sweep rate as high as 3T/s
Influence of Supercurrents on Low-Temperature Thermopower in Mesoscopic N/S Structures
The thermopower of mesoscopic normal metal/superconductor structures has been
measured at low temperatures. Effect of supercurrent present in normal part of
the structure was studied in two cases: when it was created by applied external
magnetic field and when it was applied directly using extra superconducting
electrodes. Temperature and magnetic field dependencies of thermopower are
compared to the numerical simulations based on the quasiclassical theory of the
superconducting proximity effect.Comment: 21 pages, 12 figures. To be published in the proceedings of the ULTI
conference organized in Lammi, Finland (2006
Grid-to-Graph: Flexible Spatial Relational Inductive Biases for Reinforcement Learning.
Although reinforcement learning has been successfully applied in many domains in recent years, we still lack agents that can systematically generalize. While relational inductive biases that fit a task can improve generalization of RL agents, these biases are commonly hard-coded directly in the agent's neural architecture. In this work, we show that we can incorporate relational inductive biases, encoded in the form of relational graphs, into agents. Based on this insight, we propose Grid-to-Graph (GTG), a mapping from grid structures to relational graphs that carry useful spatial relational inductive biases when processed through a Relational Graph Convolution Network (R-GCN). We show that, with GTG, R-GCNs generalize better both in terms of in-distribution and out-of-distribution compared to baselines based on Convolutional Neural Networks and Neural Logic Machines on challenging procedurally generated environments and MinAtar. Furthermore, we show that GTG produces agents that can jointly reason over observations and environment dynamics encoded in knowledge bases
From the Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings
We consider the -d quantum link model on the honeycomb lattice
and show that it is equivalent to a quantum dimer model on the Kagom\'e
lattice. The model has crystalline confined phases with spontaneously broken
translation invariance associated with pinwheel order, which is investigated
with either a Metropolis or an efficient cluster algorithm. External
half-integer non-Abelian charges (which transform non-trivially under the
center of the gauge group) are confined to each other
by fractionalized strings with a delocalized flux. The strands
of the fractionalized flux strings are domain walls that separate distinct
pinwheel phases. A second-order phase transition in the 3-d Ising universality
class separates two confining phases; one with correlated pinwheel
orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one
short paragraph are adde
- …