12,118 research outputs found

    Commanding Wheelchair in Virtual Reality with Thoughts by Multiclass BCI based on Movement-related Cortical Potentials

    Get PDF
    Brain-driven wheelchair control is an attractive application in theBrain-Computer Interface (BCI) field. In this research, wedesigned and validated a virtual wheelchair navigation systemcontrolled by our latest multiclass BCI Menu interface based on afast brain switch, which provides five commands: move forward,turn left, turn right, move backward, and stop. Preliminary resultshave shown that subjects can successfully control the wheelchairto hit all targets in the immersive virtual reality (VR)environment. This system proves an avenue to bridge the gapbetween simulation control in VR environments and real-lifewheelchair applications for mobility impairment

    Targeted drug delivery for the treatment of blood cancers

    Get PDF
    Blood cancers are a type of liquid tumor which means cancer is present in the body fluid. Multiple myeloma, leukemia, and lymphoma are the three common types of blood cancers. Chemotherapy is the major therapy of blood cancers by systemic administration of anticancer agents into the blood. However, a high incidence of relapse often happens, due to the low efficiency of the anticancer agents that accumulate in the tumor site, and therefore lead to a low survival rate of patients. This indicates an urgent need for a targeted drug delivery system to improve the safety and efficacy of therapeutics for blood cancers. In this review, we describe the current targeting strategies for blood cancers and recently investigated and approved drug delivery system formulations for blood cancers. In addition, we also discuss current challenges in the application of drug delivery systems for treating blood cancers

    The research on the performance of linear ultrasonic motor under different temperature

    Get PDF
    Linear ultrasonic motor (LUSM) is a new type of driver. LUSM has many advantages, so it is taken seriously in aeronautics and astronautics. But, because of the deficiency of studies on the performance of LUSM in abnormal temperature, it’s necessary to do research on the performance of LUSM in different ambient temperature, to confirm whether it can work under abnormal temperature and how it works. In this research, we use V type LUSM (VLUSM) as the test object, owing to that VLUSM is one basic type of linear ultrasonic motor. When doing research, we pay close attention to the moment of force and the rotation rate of VLUSM, to discover how much they change in abnormal temperature environment. This research compares all datum partitioned by different temperature, and uses figures to show the tendency of those mechanical properties in abnormal temperature. At the same time, we explain the changing by means of theories. Finally, through detailed experimental demonstration, we believe that as the temperature rises, both moment of force and rotation rate of VLUSM increase, and we can also conclude that VLUSM can work normally under abnormal temperature environment

    The Determinants, Inverses, Norm, and Spread of Skew Circulant Type Matrices Involving Any Continuous Lucas Numbers

    Get PDF
    We consider the skew circulant and skew left circulant matrices with any continuous Lucas numbers. Firstly, we discuss the invertibility of the skew circulant matrices and present the determinant and the inverse matrices by constructing the transformation matrices. Furthermore, the invertibility of the skew left circulant matrices is also discussed. We obtain the determinants and the inverse matrices of the skew left circulant matrices by utilizing the relationship between skew left circulant matrices and skew circulant matrix, respectively. Finally, the four kinds of norms and bounds for the spread of these matrices are given, respectively

    ANALYSIS OF TWO PARAREAL ALGORITHMS FOR TIME-PERIODIC PROBLEMS ∗

    Get PDF
    Abstract. The parareal algorithm, which permits us to solve evolution problems in a time parallel fashion, has created a lot of attention over the past decade. The algorithm has its roots in the multiple shooting method for boundary value problems, which in the parareal algorithm is applied to initial value problems, with a particular coarse approximation of the Jacobian matrix. It is therefore of interest to formulate parareal-type algorithms for time-periodic problems, which also couple the end of the time interval with the beginning, and to analyze their performance in this context. We present and analyze two parareal algorithms for time-periodic problems: one with a periodic coarse problem and one with a nonperiodic coarse problem. An interesting advantage of the algorithm with the nonperiodic coarse problem is that no time-periodic problems need to be solved during the iteration, since on the time subdomains, the problems are not time-periodic either. We prove for both linear and nonlinear problems convergence of the new algorithms, with linear bounds on the convergence. We also extend these results to evolution partial differential equations using Fourier techniques. We illustrate our analysis with numerical experiments, both for model problems and the realistic application of a nonlinear cooled reverse-flow reactor system of partial differential equations
    corecore