2,121 research outputs found

    Pole expansion of self-energy and interaction effect on topological insulators

    Full text link
    We study effect of interactions on time-reversal-invariant topological insulators. Their topological indices are expressed by interacting Green's functions. Under the local self-energy approximation, we connect topological index and surface states of an interacting system to an auxiliary noninteracting system, whose Hamiltonian is related to the pole-expansions of the local self-energy. This finding greatly simplifies the calculation of interacting topological indices and gives an noninteracting pictorial description of interaction driven topological phase transitions. Our results also bridge studies of the correlated topological insulating materials with the practical dynamical-mean-field-theory calculations.Comment: 4.2 pages, 3 figures, reference added, typos correcte

    Spin current through an ESR quantum dot: A real-time study

    Full text link
    The spin transport in a strongly interacting spin-pump nano-device is studied using the time-dependent variational-matrix-product-state (VMPS) approach. The precession magnetic field generates a dissipationless spin current through the quantum dot. We compute the real time spin current away from the equilibrium condition. Both transient and stationary states are reached in the simulation. The essentially exact results are compared with those from the Hartree-Fock approximation (HFA). It is found that correlation effect on the physical quantities at quasi-steady state are captured well by the HFA for small interaction strength. However the HFA misses many features in the real time dynamics. Results reported here may shed light on the understanding of the ultra-fast processes as well as the interplay of the non-equilibrium and strongly correlated effect in the transport properties.Comment: 5 pages, 5 figure

    Derivation of Electroweak Chiral Lagrangian from One Family Technicolor Model

    Full text link
    Based on previous studies deriving the chiral Lagrangian for pseudo scalar mesons from the first principle of QCD in the path integral formalism, we derive the electroweak chiral Lagrangian and dynamically compute all its coefficients from the one family technicolor model. The numerical results of the p4p^4 order coefficients obtained in this paper are proportional to the technicolor number NTCN_{\rm TC} and the technifermion number NTFN_{\rm TF}, which agrees with the arguments in previous works, and which confirms the reliability of this dynamical computation.Comment: 6 page

    Evaluation of the Influence of Aquatic Plants and Lake Bottom on the Remote-Sensing Reflectance of Optically Shallow Waters

    Get PDF
    Aquatic plants and lake bottoms in optically shallow waters (OSWs) wield great influence on reflectance spectra, resulting in the inapplicability of most existing bio-optical models for water colour remote sensing in lakes. Based on radiative transfer theory and measured spectra from a campaign for Lake Taihu in October 2008, absorption and backscattering coefficients were used to simulate the remote-sensing reflectance, which are considered to be reliable if matched to their measured counterparts. Several cases of measured spectra at different depths, Secchi disk depth transparency, and aquatic plant height and coverage were analyzed thoroughly for spectral properties. The contribution of aquatic plants was evaluated and compared with the measured and simulated remote-sensing reflectance values. This is helpful for removing the influence of aquatic plants and lake bottoms from the spectra and for constructing an improved chlorophyll a retrieval model for OSWs, such as that for Lake Taihu, China

    A Unified Framework for the Pareto Law and Matthew Effect using Scale-Free Networks

    Get PDF
    We investigate the accumulated wealth distribution by adopting evolutionary games taking place on scale-free networks. The system self-organizes to a critical Pareto distribution (1897) of wealth P(m)m(v+1)P(m)\sim m^{-(v+1)} with 1.6<v<2.01.6 < v <2.0 (which is in agreement with that of U.S. or Japan). Particularly, the agent's personal wealth is proportional to its number of contacts (connectivity), and this leads to the phenomenon that the rich gets richer and the poor gets relatively poorer, which is consistent with the Matthew Effect present in society, economy, science and so on. Though our model is simple, it provides a good representation of cooperation and profit accumulation behavior in economy, and it combines the network theory with econophysics.Comment: 5 pages, 8 figure

    Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor

    Full text link
    Alkali-doped iron selenide is the latest member of high Tc superconductor family, and its peculiar characters have immediately attracted extensive attention. We prepared high-quality potassium-doped iron selenide (KxFe2-ySe2) thin films by molecular beam epitaxy and unambiguously demonstrated the existence of phase separation, which is currently under debate, in this material using scanning tunneling microscopy and spectroscopy. The stoichiometric superconducting phase KFe2Se2 contains no iron vacancies, while the insulating phase has a \surd5\times\surd5 vacancy order. The iron vacancies are shown always destructive to superconductivity in KFe2Se2. Our study on the subgap bound states induced by the iron vacancies further reveals a magnetically-related bipartite order in the superconducting phase. These findings not only solve the existing controversies in the atomic and electronic structures in KxFe2-ySe2, but also provide valuable information on understanding the superconductivity and its interplay with magnetism in iron-based superconductors

    Anisotropic Magnetotransport and Exotic Longitudinal Linear Magnetoresistance in WTe2 Crystals

    Full text link
    WTe2 semimetal, as a typical layered transition-metal dichalcogenide, has recently attracted much attention due to the extremely large, non-saturating parabolic magnetoresistance in perpendicular field. Here, we report a systematic study of the angular dependence of the magnetoresistance in WTe2 single crystal. The violation of the Kohler rule and a significant anisotropic magnetotransport behavior in different magnetic field directions are observed. Surprisingly, when the applied field is parallel to the tungsten chains of WTe2, an exotic large longitudinal linear magnetoresistance as high as 1200% at 15 T and 2 K is identified. Violation of the Kohler rule in transverse magnetoresistance can be understood based on a dual effect of the excitons formation and thermal activation, while large longitudinal linear magnetoresistance reflects perfectly the scattering and nesting of quasi-1D nature of this balanced hole-electron system. Our work will stimulate studies of such double-carrier correlated material and corresponding quantum physics

    The DArk Matter Particle Explorer mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to 10\sim 10 TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart. Phy
    corecore