59 research outputs found

    Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations

    Get PDF
    In this paper we study multivariate polynomial functions in complex variables and the corresponding associated symmetric tensor representations. The focus is on finding conditions under which such complex polynomials/tensors always take real values. We introduce the notion of symmetric conjugate forms and general conjugate forms, and present characteristic conditions for such complex polynomials to be real-valued. As applications of our results, we discuss the relation between nonnegative polynomials and sums of squares in the context of complex polynomials. Moreover, new notions of eigenvalues/eigenvectors for complex tensors are introduced, extending properties from the Hermitian matrices. Finally, we discuss an important property for symmetric tensors, which states that the largest absolute value of eigenvalue of a symmetric real tensor is equal to its largest singular value; the result is known as Banach's theorem. We show that a similar result holds in the complex case as well

    Approximation methods for complex polynomial optimization

    Get PDF

    Moments tensors, Hilbert's identity, and k-wise uncorrelated random variables

    Get PDF

    Probability bounds for polynomial functions in random variables

    Get PDF
    corecore