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Abstract

Random sampling is a simple but powerful method in statistics and in the design of ran-
domized algorithms. In a typical application, random sampling can be applied to estimate an
extreme value, say maximum, of a function f over a set S ⊆ Rn. To do so, one may select
a simpler (even finite) subset S0 ⊆ S, randomly take some samples over S0 for a number of
times, and pick the best sample. The hope is to find a good approximate solution with rea-
sonable chance. This paper sets out to present a number of scenarios for f , S and S0 where
certain probability bounds can be established, leading to a quality assurance of the procedure.
In our setting, f is a multivariate polynomial function. We prove that if f is a d-th order
homogeneous polynomial in n variables and F is its corresponding super-symmetric tensor, and
ξi (i = 1, 2, . . . , n) are i.i.d. Bernoulli random variables taking 1 or −1 with equal probability,

then Prob
{
f(ξ1, ξ2, . . . , ξn) ≥ τn− d

2 ‖F‖1
}
≥ θ, where τ, θ > 0 are two universal constants and

‖ · ‖1 denotes the summation of the absolute values of all its entries. Several new inequalities
concerning probabilities of the above nature are presented in this paper. Moreover, we show that
the bounds are tight in most cases. Applications of our results in optimization are discussed as
well.
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1 Introduction.

Let f(x) : Rn → R be a function, and S ⊆ Rn be a given set, wherewith we consider: maxx∈S f(x).
A possible generic approximation method for solving this problem would be randomization and
sampling. In particular, we may proceed as follows: (i) choose a suitable and well-structured
subset S0 ⊆ S; (ii) design a suitable probability distribution ξ on S0; (iii) take some random
samples and pick the best solution. The quality of this approach, of course, depends on the chance
of hitting some ‘good solutions’ by the random sampling. In other words, a bound in the following
format is of crucial importance to us:

Prob
ξ∼S0

{
f(ξ) ≥ τ max

x∈S
f(x)

}
≥ θ, (1)

where τ > 0 and 0 < θ < 1 are certain constants.
In another situation, the original problem of interest is maxx∈S0 f(x). Replacing the constraint

set to be x ∈ S is a relaxation and it can help to create an easier problem to analyze. In this setting,
a bound like (1) is useful in terms of deriving an approximate solution for solving the problem. A
good example of this approach is the max-cut formulation of Goemans and Williamson [6], where S0

is the set of rank-one positive semidefinite matrices with diagonal elements being all-ones, and S is
S0 dropping the rank-one restriction. In [19, 18, 10], this technique helped in the design of efficient
randomized approximation algorithms for solving quadratically constrained quadratic programs by
semidefinite programming (SDP) relaxation.

Motivated mainly due to its generic interest and importance, primarily in optimization, the
current paper is devoted to the establishment of inequalities of type (1), under various assumptions.
Of course such probability estimation cannot hold in general, unless some structures are in place.
However, once (1) indeed holds, then with probability θ we will get a solution whose value is no
worse than τ times the best possible value of f(x) over S. In other words, with probability θ we
will be able to generate a τ -approximate solution. In particular, if we independently draw m trials
of ξ on S0 and pick the one with the largest function value, then this process is a randomized
approximation algorithm with approximation ratio τ , where the probability to this quality solution

is at least 1 − (1 − θ)m. If m =
ln 1

ε
θ then 1 − (1 − θ)m ≥ 1 − ε, and this randomized algorithm

indeed runs in polynomial-time in the problem dimensions.
In fact, the framework of our investigation, viz. the probability bound (1), is sufficiently rich to

include some highly nontrivial results beyond optimization as well. As an example, let f(x) = aTx
be a linear function, and S = S0 = Bn := {1,−1}n be a binary hypercube. Khot and Naor in [13]
derived the following probability bound, which can be seen as a nontrivial instance of (1).

For every δ ∈ (0, 1
2), there is a constant c1(δ) > 0 with the following property: Fix

a = (a1, a2, . . . , an)T ∈ Rn and let ξ1, ξ2, . . . , ξn be i.i.d. symmetric Bernoulli random
variables (taking ±1 with equal probability), then

Prob


n∑
j=1

ajξj ≥
√
δ lnn

n
‖a‖1

 ≥ c1(δ)

nδ
. (2)

Since maxx∈Bn a
Tx = ‖a‖1, (2) is of type (1), with τ =

√
δ lnn
n and θ = c1(δ)

nδ
. This bound

indeed gives rise to an Θ

(√
lnn
n

)
-approximation algorithm for the binary constrained trilinear
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form maximization problem:

max F (x, y, z) :=
∑n

i,j,k=1 aijkxiyjzk
s.t. x, y, z ∈ Bn.

To see why, let us denote its optimal solution to be (x∗, y∗, z∗) = arg maxx,y,z∈Bn F (x, y, z). By
letting a = F (·, y∗, z∗) ∈ Rn and ξ1, ξ2, . . . , ξn be i.i.d. symmetric Bernoulli random variables, it
follows from (2) that

Prob

{
F (ξ, y∗, z∗) ≥

√
δ lnn

n
‖F (·, y∗, z∗)‖1

}
≥ c1(δ)

nδ
. (3)

Notice that by the optimality of (x∗, y∗, z∗), we have ‖F (·, y∗, z∗)‖1 = F (x∗, y∗, z∗). Besides for
any fixed ξ, the problem maxy,z∈Bn F (ξ, y, z) is a binary constrained bilinear form maximization
problem, which admits a deterministic approximation algorithm with approximation ratio 0.03 (see
Alon and Naor [1]). Thus we are able to find two vectors yξ, zξ ∈ Bn in polynomial-time such that

F (ξ, yξ, zξ) ≥ 0.03 max
y,z∈Bn

F (ξ, y, z) ≥ 0.03F (ξ, y∗, z∗),

which by (3) implies

Prob

{
F (ξ, yξ, zξ) ≥ 0.03

√
δ lnn

n
F (x∗, y∗, z∗)

}
≥ c1(δ)

nδ
.

Now we may independently draw ξ1, ξ2, . . . , ξn, followed by the algorithm proposed in [1] to solve

maxy,z∈Bn F (ξ, y, z). If we apply this procedure
nδ ln 1

ε
c1(δ) times and pick the one with the largest

objective value, then it is actually a polynomial-time randomized approximation algorithm with

approximation ratio 0.03
√

δ lnn
n , whose chance of getting this quality bound is at least 1− ε.

The scope of applications for results of type (1) is certainly beyond optimization per se; it is
significant in the nature of probability theory itself. Recall that most classical results in probability
theory is to upper bound the tail of a distribution (e.g. the Markov inequality and the Chebyshev
inequality), say Prob {ξ ≥ a} ≤ b. In other words, these are the upper bounds for the probability
of a random variable beyond a threshold value. However, in some applications a lower bound for
such probability can be relevant, in the form of

Prob {ξ ≥ a} ≥ b. (4)

One interesting example is a result due to Ben-Tal, Nemirovskii, and Roos [2], where they proved a
lower bound of 1/8n2 for the probability that a homogeneous quadratic form of n i.i.d. symmetric
Bernoulli random variables lies above its mean. More precisely, they proved the following:

If F ∈ Rn×n is a symmetric matrix and ξ = (ξ1, ξ2, . . . , ξn)T are i.i.d. symmetric Bernoul-
li random variables, then

Prob
{
ξTFξ ≥ tr (F )

}
≥ 1

8n2
.

As a matter of fact, the authors went on to conjecture in [2] that the lower bound can be as high as
1
4 , which was very recently disproved by Yuan [23]. However, the value of the tight bound remains
unknown. A significant progress on this conjecture is due to He et al. [10], where the authors
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improved the lower bound of 1
8n2 to 0.03. Note that the result of He et al. [10] also holds for

any ξi’s being i.i.d. standard normal random variables. Luo and Zhang [17] provides a constant
lower bound for the probability that a homogeneous quartic function of a zero mean multivariate
normal distribution lies above its mean, which was a first attempt to extend such probability bound
for functions of random variables beyond quadratic. For a univariate random variable, bounds of
type (4) and its various extensions can be found in a recent paper by He, Zhang, and Zhang [11].

A well known result of Grünbaum [7] can also be put in the category of probability inequality (4).
Grünbaum’s theorem asserts:

If S ⊆ Rn is convex and ξ is uniformly distributed on S, then for any c ∈ Rn,

Prob
{
cTξ ≥ cTEξ

}
≥ 1

e
.

The current paper aims at providing various new lower bounds for inequalities of type (1), when
f is a multivariate polynomial function. To enable the presentation of our results, let us first briefly
introduce the notations adopted in this paper. For any given d-th order tensor F ∈ Rn1×n2×···×nd ,
we denote F (x1, x2, . . . , xd) to be the multilinear form induced by the tensor F , i.e.,

F (x1, x2, . . . , xd) :=
∑

1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

Fi1i2...idx
1
i1x

2
i2 . . . x

d
id

= F • (x1 ⊗ x2 ⊗ · · · ⊗ xd),

where xi ∈ Rni for i = 1, 2, . . . , d. If F ∈ Rnd is super-symmetric (the component is invariant
under the permutation of the indices), we denote f(x) to be the homogeneous polynomial function
of x ∈ Rn induced by the super-symmetric tensor F , i.e.,

f(x) := F (x, x, . . . , x︸ ︷︷ ︸
d

) =
∑

1≤i1,i2,...,id≤n
Fi1i2...idxi1xi2 . . . xid = F • (x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸

d

).

For any given set S ⊆ Rn, ξ ∼ S stands for that ξ is a multivariate uniform distribution on the
support S. Two types of support sets are frequently used in this paper, namely

Bn := {1,−1}n and Sn := {x ∈ Rn : ‖x‖2 = 1}.

It is easy to verify the following equivalent relationship:

1. ξ = (ξ1, ξ2, . . . , ξn)T ∼ Bn is equivalent to ξi ∼ B (i = 1, 2, . . . , n), and ξi’s are i.i.d. random
variables;

2. ξ = (ξ1, ξ2, . . . , ξn)T ∼ Sn is equivalent to η/‖η‖2, with η = (η1, η2, . . . , ηn)T and ηi’s are i.i.d.
standard normal random variables.

To simplify the presentation, the notion Θ(f(n)) signifies the fact that there are positive uni-
versal constants α, β and n0 such that αf(n) ≤ Θ(f(n)) ≤ βf(n) for all n ≥ n0; i.e., it is of the
same order as f(n). To avoid confusion, the term constant sometimes also refers to a parameter
depending only on the dimension of a polynomial function, which is a given number independent of
the input data of the problem. In this paper, we use the L1 norm (the sum of the absolute values
of its entries) or L2 norm (the square root of the sum of its squared entries) for vectors, matrices,
and high order tensors.

The paper is organized as follows. In Section 2, we present probability inequalities of type (1)
where f is a multilinear form, and ξ is either a random vector with i.i.d. symmetric Bernoulli random
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variables, or a uniform distribution over hypersphere. Then in Section 3, we present another set
of probability bounds of homogeneous polynomial function over a general class of independent
random variables, including symmetric Bernoulli random variables and uniform distribution over
hypersphere. We discuss some polynomial optimization problems where these probability bounds
can be directly applied in Section 4. Finally, we summarize and discuss the main results presented
in the paper in Section 5, with concluding remarks.

2 Multilinear tensor function in random variables.

In this section we present the following result, which provides tight probability bounds for multi-
linear form in two different sets of random variables.

Theorem 2.1 Let ξi ∼ Bni (i = 1, 2, . . . , d) be independent of each other, and ηi ∼ Sni (i =
1, 2, . . . , d) be independent of each other. For any d-th order tensor F ∈ Rn1×n2×···×nd with n1 ≤
n2 ≤ · · · ≤ nd, and constant δ ∈ (0, 1

2), γ ∈ (0, nd
lnnd

), it follows that

Prob

{
F (ξ1, ξ2, . . . , ξd) ≥ cd−1

3

√
δ lnnd∏d
i=1 ni

‖F‖1

}
≥ c1(δ)c2d−2

3

nδd
∏d
i=2 n

i−1
i

, (5)

Prob

{
F (η1, η2, . . . , ηd) ≥ 1

2
d−1
2

√
γ lnnd∏d
i=1 ni

‖F‖2

}
≥ c2(γ)

4d−1n2γ
d

√
lnnd

∏d−1
i=1 ni

, (6)

where c1(δ) is a constant depended only on δ, c2(γ) is a constant depended only on γ, and c3 :=
8

25
√

5
≈ 0.1431. Moreover, the order of magnitude ‘

√
lnnd∏d
i=1 ni

’ inside ‘ Prob’ in (5) and (6) cannot

be improved, if the probability bound on the right-hand-side is at least the reciprocal of a polynomial
function in nd.

We remark here that the degree d is deemed a fixed constant in our discussion. If we let
S = Bn1×n2×···×nd and S0 = {X ∈ Bn1×n2×···×nd | rank (X) = 1}, then (5) is in the form of (1).
Similarly, if we let S = Sn1×n2×···×nd and S0 = {X ∈ Sn1×n2×···×nd | rank (X) = 1}, then (6) is in
the form of (1). For clarity, we shall prove (5) and (6) separately in the following two subsections.

Before doing this, let us first comment on the tightness of the bound τd := Θ

(√
lnnd∏d
i=1 ni

)
=

Θ

(√
ln

∏d
i=1 ni∏d
i=1 ni

)
, where the last equality holds because d is a fixed constant and ni ≤ nd for

i = 1, 2, . . . , d − 1. The tightness of the bounds is due to the inapproximability of computing the
diameters of convex bodies, as shown below.

Lemma 2.2 (Khot and Naor [13]) Let K ∈ Rn be a convex body with a weak optimization oracle.
Then there is no randomized oracle-polynomial time algorithm that can compute the L1 diameter

of K with accuracy Θ

(√
lnn
n

)
.

Lemma 2.3 (Brieden et al. [3, 4]) Let K ∈ Rn be a convex body with a weak optimization oracle.
Then there is no randomized oracle-polynomial time algorithm that can compute the L2 diameter

of K with accuracy Θ

(√
lnn
n

)
.
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These results in fact lead to the tightness of τ1 = Θ
(√

lnn1
n1

)
in the case d = 1 (when the tensor

F in (5) and (6) is a vector), for, if τ1 could be improved, then applying the same argument as in
the proof of Theorem 3.1 in [13]: drawing enough (polynomial number of) samples of ξ ∈ Bn for
the L1 case (respective η ∈ Sn for the L2 case) followed by the oracle-polynomial time algorithm,
would then improve the approximation bound τ1 for the L1 (respective L2) diameter.

In fact, τ1 is a tight bound not only for ξ ∼ Bn but also for other structural distributions on the
support set Bn, also due to the inapproximability of computing the L1 diameters of convex bodies
(Lemma 2.2). Now, for any given degree d, if we denote n =

∏d
i=1 ni, then (5) is essentially

Prob

{
F • (ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξd) ≥ Θ

(√
lnn

n

)
‖F‖1

}
≥ Θ

(
1

nαd

)
(7)

for some constant α. Denote ξ = ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξd, and clearly it is an implementable distribution
on the support Bn. Thus (7) can be regarded as in the form of (5) for d = 1. Due to the tightness

of τ1, the bound τd = Θ

(√
lnnd∏d
i=1 ni

)
= Θ

(√
lnn
n

)
for general d in (5), once established, is tight

too. The same argument of the structural distribution on the support set Sn with n =
∏d
i=1 ni can

be applied to prove the tightness of τ1 in (6), using Lemma 2.3. It is interesting to note that the
difference between a completely free ξ and the more restrictive ξ = ξ1⊗ ξ2⊗· · ·⊗ ξd lies in the fact
that the latter is rank-one. Hence, the establishment of (5) and (6) actually implies that as far as
the randomized solution is concerned, the rank-one restriction is immaterial.

2.1 Multilinear tensor function in Bernoulli random variables.

This subsection is dedicated to the proof of the first part of Theorem 2.1, namely (5). Let us start
with some technical preparations. First, we have the following immediate probability estimation.

Lemma 2.4 If ξ ∼ Bn, then for any vector a ∈ Rn,

E|aTξ| ≥ 2c3‖a‖2.

Proof. Denote z = |aTξ|, and observe

Ez2 = E

[
n∑
i=1

ξiai

]2

= E

 n∑
i=1

a2
i + 2

∑
1≤i<j≤n

ξiξjaiaj

 =

n∑
i=1

a2
i = ‖a‖22.

Direct computation shows that Ez4 ≤ 9
(
Ez2

)2
. By the Paley-Zygmund inequality [20], for every

α ∈ (0, 1),

Prob
{
z ≥
√
αEz2

}
= Prob

{
z2 ≥ αEz2

}
≥ (1− α)2

(
Ez2

)2
/Ez4 ≥ (1− α)2/9.

Since z ≥ 0, we have

Ez ≥ Prob
{
z ≥
√
αEz2

}√
αEz2 ≥ (1− α)2

9

√
αEz2 =

(1− α)2√α
9

‖a‖2.

By maximizing (1−α)2
√
α

9 over α ∈ (0, 1), we have Ez ≥ 16
25
√

5
‖a‖2 = 2c3‖a‖2. �

We shall establish (5) by induction on the degree d. The first inductive step from d = 1 to
d = 2 relies on the next lemma.
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Lemma 2.5 If ξ ∼ Bn, then for any matrix A ∈ Rm×n,

Prob

{
‖Aξ‖1 ≥

c3√
n
‖A‖1

}
≥ c2

3

m
.

Proof. Denote ai ∈ Rn (i = 1, 2, . . . ,m) to be the i-th row vector of the matrix A. By Lemma 2.4
we have for each i = 1, 2, . . . ,m,

E
∣∣ξTai

∣∣ ≥ 2c3‖ai‖2 ≥
2c3√
n
‖ai‖1.

Summing over all i = 1, 2, . . . ,m, we have

E‖Aξ‖1 =

m∑
i=1

E
∣∣ξTai

∣∣ ≥ 2c3√
n
‖A‖1.

On the other hand,

(E‖Aξ‖1)2 =

(
m∑
i=1

E
∣∣ξTai

∣∣)2

≥
m∑
i=1

(
E
∣∣ξTai

∣∣)2 ≥ m∑
i=1

4c2
3‖ai‖22 = 4c2

3‖A‖22,

and

E‖Aξ‖21 = E

[
m∑
i=1

∣∣ξTai
∣∣]2

≤ E

[
m

m∑
i=1

∣∣ξTai
∣∣2] = m

m∑
i=1

E
[
ξTai

]2
= m

m∑
i=1

‖ai‖22 = m‖A‖22.

Thus by the Paley-Zygmund inequality we conclude that for any α ∈ (0, 1),

Prob

{
‖Aξ‖1 ≥

2αc3√
n
‖A‖1

}
≥ Prob {‖Aξ‖1 ≥ αE‖Aξ‖1} ≥ (1−α)2 (E‖Aξ‖1)2

E‖Aξ‖21
≥ (1−α)2 4c2

3‖A‖22
m‖A‖22

.

Finally, letting α = 1
2 proves the lemma. �

We remark that in the above inequality, the coefficient c3√
n

in front of ‖A‖1 is independent of

the number of rows (m) for matrix A. Towards proving (5) by induction for general d, for ease of
referencing we state the following simple fact regarding joint conditional probability.

Proposition 2.6 Suppose ξ and η are two random variables with support sets U ⊆ Rn and V ⊆ Rm
respectively. For V ′ ⊆ V , W ′ ⊆ U × V and δ > 0, if

Prob
ξ

{
(ξ, y) ∈W ′

}
≥ δ ∀ y ∈ V

and
Prob
η

{
η ∈ V ′

}
> 0,

then the joint conditional probability

Prob
(ξ,η)

{
(ξ, η) ∈W ′

∣∣∣∣ η ∈ V ′} ≥ δ.
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Proof. Notice that the first assumption is equivalent to

Prob
(ξ,η)

{
(ξ, η) ∈W ′

∣∣∣∣ η = y

}
≥ δ ∀ y ∈ V. (8)

Suppose that η has a density g in V , then

Prob
(ξ,η)

{
(ξ, η) ∈W ′

∣∣∣∣ η ∈ V ′} = Prob
(ξ,η)

{
(ξ, η) ∈W ′, η ∈ V ′

}/
Prob
η

{
η ∈ V ′

}
=

∫
V ′

Prob
(ξ,η)

{
(ξ, η) ∈W ′, η = y

}
g(y)dy

/
Prob
η

{
η ∈ V ′

}
≥

∫
V ′
δg(y)dy

/
Prob
η

{
η ∈ V ′

}
= δ.

The case where η is a discrete random variable can be handled similarly. �

We are now ready to prove (5).
Proof of (5) in Theorem 2.1. Proof. The proof is based on induction on d. The case for

d = 1 has been established by Khot and Naor [13]. Suppose the inequality holds for d − 1, by
treating ξ1 as a given parameter and taking F (ξ1, ·, ·, . . . , ·) as a tensor of order d− 1, one has

Prob
(ξ2,ξ3,...,ξd)

{
F (ξ1, ξ2, . . . , ξd) ≥ cd−2

3

√
δ lnnd∏d
i=2 ni

‖F (ξ1, ·, ·, . . . , ·)‖1

}
≥ c1(δ)c2d−4

3

nδd
∏d
i=3 n

i−2
i

.

Define the event E1 =
{
‖F (ξ1, ·, ·, . . . , ·)‖1 ≥ c3√

n1
‖F‖1

}
. By applying Proposition 2.6 with ξ =

(ξ2, ξ3, . . . , ξd) and η = ξ1, we have

Prob
(ξ1,ξ2,...,ξd)

{
F (ξ1, ξ2, . . . , ξd) ≥ cd−2

3

√
δ lnnd∏d
i=2 ni

‖F (ξ1, ·, ·, . . . , ·)‖1
∣∣∣∣E1

}
≥ c1(δ)c

2(d−2)
3

nδd
∏d
i=3 n

i−2
i

. (9)

The desired probability can be lower bounded as follows:

Prob

{
F (ξ1, ξ2, . . . , ξd) ≥ cd−1

3

√
δ lnnd∏d
i=1 ni

‖F‖1

}

≥ Prob
(ξ1,ξ2,...,ξd)

{
F (ξ1, ξ2, . . . , ξd) ≥ cd−2

3

√
δ lnnd∏d
i=2 ni

‖F (ξ1, ·, ·, . . . , ·)‖1
∣∣∣∣E1

}
· Prob {E1}

≥ c1(δ)c2d−4
3

nδd
∏d
i=3 n

i−2
i

· c2
3∏d

i=2 ni
=

c1(δ)c2d−2
3

4d−1nδd
∏d
i=2 n

i−1
i

,

where the last inequality is due to (9) and Lemma 2.5. �

2.2 Multilinear tensor function over hyperspheres.

In this subsection we shall prove the second part of Theorem 2.1, namely (6). The main construction
is analogous to that of the proof for (5). First we shall establish a counterpart of inequality (2), i.e.,
we prove (6) for d = 1, which is essentially the following Lemma 2.7. Namely, if we uniformly and
independently draw two vectors in Sn, then there is non-trial probability that their inner product

is at least

(√
γ lnn
n

)
for certain positive γ.
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Lemma 2.7 For every γ > 0, if a, x ∼ Sn with γ lnn < n are drawn independently, then there is
a constant c2(γ) > 0, such that

Prob

{
aTx ≥

√
γ lnn

n

}
≥ c2(γ)

n2γ
√

lnn
.

Proof. By the symmetricity of Sn, we may without loss of generality assume that a is a given vector
in Sn, e.g. a = (1, 0, . . . , 0)T. Let ηi (i = 1, 2, . . . , n) be i.i.d. standard normal random variables,
then x = η/‖η‖2 and aTx = η1/‖η‖2.

First, we have for n ≥ 2

Prob
{
η1 ≥ 2

√
γ lnn

}
=

∫ +∞

2
√
γ lnn

1√
2π
e−

x2

2 dx

≥
∫ 4
√
γ lnn

2
√
γ lnn

1√
2π
e−

x2

2 dx

≥
∫ 4
√
γ lnn

2
√
γ lnn

1√
2π

x

4
√
γ lnn

e−
x2

2 dx

=
1√

32πγ lnn

(
1

n2γ
− 1

n8γ

)
.

Secondly, we have

Prob
{
‖η‖2 ≥ 2

√
n
}
≤ e−

2n
3 . (10)

To see why (10) holds, we may use a result on the χ2-distribution estimation by Laurent and
Massart (Lemma 1 of [14]): For any vector b = (b1, b2, . . . , bn)T with bi ≥ 0 (i = 1, 2, . . . , n),
denote z =

∑n
i=1 bi(η

2
i − 1), then for any t > 0,

Prob
{
z ≥ 2‖b‖2

√
t+ 2‖b‖∞t

}
≤ e−t.

Letting b to be the all-one vector and t = 2n
3 leads to

Prob

{
‖η‖22 ≥

7n

3
+

√
8

3
n

}
≤ e−

2n
3 ,

which implies (10).
By these two inequalities, we conclude that

Prob

{
aTx ≥

√
γ lnn

n

}
= Prob

{
η1

‖η‖2
≥
√
γ lnn

n

}
≥ Prob

{
η1 ≥ 2

√
γ lnn, ‖η‖2 ≤ 2

√
n
}

≥ Prob
{
η1 ≥ 2

√
γ lnn

}
− Prob

{
‖η‖2 ≥ 2

√
n
}

≥ 1√
32γπ lnn

(
1

n2γ
− 1

n8γ

)
− e−

2n
3 .

9



Therefore, there exists n0(γ) > 0, depending only on γ, such that

Prob

{
aTx ≥

√
γ lnn

n

}
≥ 1√

32γπ lnn

(
1

n2γ
− 1

n8γ

)
− e−

2n
3 ≥ 1

2n2γ
√

32γπ lnn
∀n ≥ n0(γ).

On the other hand, 0 < γ < n
lnn implies that Prob

{
aTx ≥

√
γ lnn
n

}
> 0. Therefore

min
n<n0(γ), γ lnn<n, n∈Z

Prob

{
aTx ≥

√
γ lnn

n

}
· n2γ
√

lnn = t(γ) > 0,

where t(γ) depends only on γ. Finally, letting c2(γ) = min
{
t(γ), 1

2
√

32γπ

}
proves the lemma. �

We remark that similar bound was proposed by Brieden et al. (Lemma 5.1 in [3], also in [4]),
where the authors showed that

Prob

{
aTx ≥

√
lnn

n

}
≥ 1

10
√

lnn

(
1− lnn

n

)n−1
2

,

for any n ≥ 2. Lemma 2.7 gives a more flexible bound by incorporating the parameter γ, though
the probability bound at γ = 1 is worse. Now, for any vector a ∈ Rn, as a/‖a‖2 ∈ Sn, we have for
x ∼ Sn

Prob

{
aTx ≥

√
γ lnn

n
‖a‖2

}
= Prob

{(
a

‖a‖2

)T

x ≥
√
γ lnn

n

}
≥ c2(γ)

n2γ
√

lnn
, (11)

which implies (6) holds when d = 1. To proceed to the high order case, let us introduce the following
intermediate result, which is analogous to Lemma 2.5 in previous subsection.

Lemma 2.8 If x ∼ Sn, then for any matrix A ∈ Rm×n,

Prob

{
‖Ax‖2 ≥

1√
2n
‖A‖2

}
≥ 1

4n
.

Proof. Let ATA = PTΛP , where P is orthonormal and Λ = diag(λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0 (since ATA is positive semidefinite). Denote y = Px. Since P is orthonormal and
x ∼ Sn, we have y ∼ Sn. Notice that ‖Ax‖22 = xTATAx = xTPTΛPx = yTΛy =

∑n
i=1 λiy

2
i and

‖A‖22 = tr (ATA) =
∑n

i=1 λi, and the target probability is then

Prob

{
‖Ax‖2 ≥

1√
2n
‖A‖2

}
= Prob

{
‖Ax‖22 ≥

1

2n
‖A‖22

}
= Prob

{
n∑
i=1

λiy
2
i ≥

1

2n

n∑
i=1

λi

}
,

where y ∼ Sn.
By the symmetricity of uniform distribution on the sphere, we have E[y2

1] = E[y2
2] = · · · = E[y2

n].
Combining with E[

∑n
i=1 y

2
i ] = 1 leads to E[y2

i ] = 1
n for all 1 ≤ i ≤ n. Therefore

E

[
n∑
i=1

λiy
2
i

]
=

n∑
i=1

λiE[y2
i ] =

1

n

n∑
i=1

λi.

10



We are going to complete the proof by the Paley-Zygmund inequality. To this end, let us estimate
E
[∑n

i=1 λiy
2
i

]2
. Again by the symmetricity of uniform distribution on the sphere, we have E[y4

i ] = α
for all 1 ≤ i ≤ n, and E[y2

i y
2
j ] = β for any 1 ≤ i < j ≤ n, where α, β > 0 are constants to be to be

determined. First

1 = E

[
n∑
i=1

y2
i

]2

≥ E

[
n∑
i=1

y4
i

]
= αn =⇒ α ≤ 1

n
.

Next
0 ≤ E[y2

1 − y2
2]2 = E[y4

1] + E[y4
2]− 2E[y2

1y
2
2] = 2α− 2β =⇒ β ≤ α ≤ 1/n.

Noticing that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 leads to

E

[
n∑
i=1

λiy
2
i

]2

= α

n∑
i=1

λ2
i + 2β

∑
1≤i<j≤n

λiλj ≤
1

n

(
n∑
i=1

λi

)2

= n

(
E

[
n∑
i=1

λiy
2
i

])2

.

Finally, by the Paley-Zygmund inequality, we have

Prob

{
n∑
i=1

λiy
2
i ≥

1

2n

n∑
i=1

λi

}
= Prob

{
n∑
i=1

λiy
2
i ≥

1

2
E

[
n∑
i=1

λiy
2
i

]}

≥
(

1− 1

2

)2
(
E
[∑n

i=1 λiy
2
i

])2
E
[∑n

i=1 λiy
2
i

]2 ≥ 1

4n
.

�

With the above preparations, the proof of (6) in Theorem 2.1 now follows from a similar
induction argument as the proof of (5); the details are omitted here. Essentially, Lemma 2.7 helps
with the basis case, and Lemma 2.8 helps to complete the inductive step.

3 Homogeneous polynomial function in random variables.

The previous section is concerned with tensor forms of independent entry vectors. One important
aspect of the tensors is the connection to the polynomial functions. As is well known, a homo-
geneous d-th degree polynomial uniquely determines a super-symmetric tensor of d entry vectors.
In this section we shall discuss the probability for polynomial function of random variables. In
our discussion, the notion of square-free tensor plays an important role. Essentially, in the case of
matrices, ‘square-free’ is equivalent to that the diagonal elements are all zero. For a general tensor
F = (ai1i2...id), ‘square-free’ means that ai1i2...id = 0 whenever at least two indices are equal.

Theorem 3.1 Let F ∈ Rnd be a square-free super-symmetric tensor of order d, and let f(x) =
F (x, x, . . . , x) be a homogeneous polynomial function induced by F . If ξ = (ξ1, ξ2, . . . , ξn)T are
independent random variables with Eξi = 0,Eξ2

i = 1,Eξ4
i ≤ κ for i = 1, 2, . . . , n, then

Prob

{
f(ξ) ≥

√
d!

16κ
‖F‖2

}
≥ 2

√
3− 3

9d2(d!)236dκd
, (12)

Prob

{
f(ξ) ≥

√
d!

16κnd
‖F‖1

}
≥ 2

√
3− 3

9d2(d!)236dκd
. (13)
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Compared to Theorem 2.1 in the previous section, Theorem 3.1 only requires the random
variables to be independent from each other, and each with a bounded kurtosis, including the
Bernoulli random variables and normal random variables as special cases. It is easy to verify that,
under the square-free property of F , together with the assumptions Eξi = 0 and ξi’s are independent
from each other (i = 1, 2, . . . , n), we then have E[f(ξ)] = 0. Since Eξ2

i = 1 (i = 1, 2, . . . , n), we
compute that Var (f(ξ)) = Θ

(
‖F‖22

)
. This means that the standard deviation of f(ξ) is in the

same order of ‖F‖2. Assertion (12) essentially states that given any set of independent random
variables with bounded kurtosis, any square-free polynomial of these random variables will have a
certain thickness of the tail at some point.

The proof for Theorem 3.1 is technically involved, and we shall delegate the details to the
appendix. Although our main results in Theorem 3.1 are valid for arbitrary random variables, it is
interesting to discuss its implications when the random variables are uniform distributions on Bn
and Sn. In case of quadratic polynomial of Bernoulli random variables, we have the following:

Proposition 3.2 If F is a diagonal-free symmetric matrix and ξ ∼ Bn, then

Prob

{
ξTFξ ≥ ‖F‖2

2
√

30

}
≥ 2
√

3− 3

135
.

The proof of this proposition will be discussed in appendix too. We remark that Proposition 3.2
is an extension to the result of Ben-Tal, Nemirovskii, and Roos [2] where it was shown that
Prob

{
xTFx ≥ 0

}
≥ 1

8n2 , and the result of He et al. [10] where it was shown that Prob
{
xTFx ≥ 0

}
≥

0.03. Essentially, Proposition 3.2 is on the probability of a strict tail rather than the probability
above the mean.

Proposition 3.3 Let F ∈ Rnd be a square-free super-symmetric tensor of order d, and let f(x) =
F (x, x, . . . , x) be a homogeneous polynomial function induced by F . If ξ ∼ Bn, then

Prob

{
f(ξ) ≥

√
d!

16nd
‖F‖1

}
≥ 2

√
3− 3

9d2(d!)236d
.

Moreover, the order of magnitude n−
d
2 inside ‘ Prob’ cannot be improved for d = 2, 4.

As a remark, Proposition 3.3 can be seen as an instance of (1) in the case f(X) = F • X,

S = {X ∈ Bnd : X is super-symmetric} and S0 = {X ∈ S : rank (X) = 1}. The probability bound
in Proposition 3.3 directly follows from (13), since Eξi = 0,Eξ2

i = Eξ4
i = 1 for all i = 1, 2, . . . , n. It

remains to show that even in this special case, the bounds are tight when d = 2 and d = 4, which
are illustrated by the following examples.

Example 3.4 For the case d = 2, define F = I − E, where I is the identity and E is the all-one
matrix. In this case, for any x ∈ Bn, xTFx = n − (eTx)2 ≤ n and ‖F‖1 = n2 − n. Therefore
xTFx/‖F‖1 ≤ 1/(n− 1) for any x ∈ Bn, implying that the ratio cannot be better than Θ

(
n−1

)
for

any positive probability.
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Example 3.5 For the case d = 4, define F to be the square-free tensor of order 4, with all non-
square-free components being −1. It is obvious that ‖F‖1 = Θ

(
n4
)
, and for any x ∈ Bn

F (x, x, x, x) =
n∑
i=1

x4
i + 12

∑
i 6=j,j 6=k,i6=k

x2
ixjxk + 6

∑
i 6=j

x2
ix

2
j + 4

∑
i 6=j

x3
ixj −

(
n∑
i=1

xi

)4

= n+ 12(n− 2)
∑
j 6=k

xjxk + 3n(n− 1) + 4
∑
i 6=j

xixj −

(
n∑
i=1

xi

)4

= 3n2 − 2n+ (6n− 10)
∑
j 6=k

2xjxk −

(
n∑
i=1

xi

)4

= 3n2 − 2n+ (6n− 10)

( n∑
i=1

xi

)2

− n

−( n∑
i=1

xi

)4

= 3n2 − 2n− n(6n− 10) + (3n− 5)2 −

( n∑
i=1

xi

)2

− (3n− 5)

2

≤ 6n2 − 22n+ 25.

Thus we have F (x, x, x, x)/‖F‖1 ≤ Θ
(
n−2

)
, implying that the ratio cannot be better than Θ

(
n−2

)
for any positive probability.

We believe that examples of the above type exist for any given d ≥ 4; however, so far we are
unable to explicitly construct a general example.

Let us now specialize the random variables to be uniformly distributed on the hypersphere.
Since the components of the unit vector are not independent, we cannot directly apply Theorem 3.1.
However, similar results can still be obtained.

Proposition 3.6 Let F ∈ Rnd be a square-free super-symmetric tensor of order d, and let f(x) =
F (x, x, . . . , x) be a homogeneous polynomial function induced by F . If η ∼ Sn, then

Prob

{
f(η) ≥

√
d!

48(4n)d
‖F‖2

}
≥ 2

√
3− 3

9d2(d!)2108d
− e−

2n
3 .

Proof. Let η = ξ/‖ξ‖2 with ξ = (ξ1, ξ2, . . . , ξn)T being i.i.d. standard normal random variables.
Since Eξi = 0,Eξ2

i = 1,Eξ4
i = 3 for all 1 ≤ i ≤ n, by applying (12) in Theorem 3.1 with κ = 3, we

have

Prob

{
f(ξ) ≥

√
d!

48
‖F‖2

}
≥ 2

√
3− 3

9d2(d!)2108d
.
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Together with (10), we have

Prob

{
f(η) ≥

√
d!

48(4n)d
‖F‖2

}
= Prob

{
f

(
ξ

‖ξ‖2

)
≥

√
d!

48(4n)d
‖F‖2

}
≥ Prob

{
f(ξ) ≥

√
d!/48 ‖F‖2, ‖ξ‖2 ≤ 2

√
n
}

≥ Prob
{
f(ξ) ≥

√
d!/48 ‖F‖2

}
− Prob

{
‖ξ‖2 ≥ 2

√
n
}

≥ 2
√

3− 3

9d2(d!)2108d
− e−

2n
3 .

�

Before concluding this section, we remark that Proposition 3.6 can still be categorized to the type
of (1) with f(X) = F •X, S = {X ∈ Snd : X is super-symmetric} and S0 = {X ∈ S : rank (X) =
1}. Luo and Zhang [17] offered a constant lower bound for the probability that a homogeneous
quartic form of a zero mean multivariate normal distribution lies above its mean. In particular,
by restricting the distributions to be i.i.d. standard normals and quartic form to be square-free,
applying Theorem 3.1 in the case of d = 4, we obtain a constant bound for the probability that the
quartic form above the mean plus some constant times the standard deviation. We may view this
as a strengthening of the result in [17].

4 Applications of polynomial function optimization.

As discussed in the introduction, the probability bounds in the form of (1) have immediate applica-
tions in optimization. In particular, in this section we shall apply the bounds derived in Sections 2
and 3 to polynomial function optimization problems. We shall derive polynomial-time random-
ized approximation algorithms, with the approximation ratios improving the existing ones in the
literature.

4.1 Polynomial optimization in binary variables.

The general unconstrained binary polynomial optimization model is maxx∈Bn p(x), where p(x) is a
multivariate polynomial function. He, Li, and Zhang [9] proposed a polynomial-time randomized
approximation algorithm with a relative performance ratio. When the polynomial p(x) is homoge-
neous, this problem has many applications in graph theory; e.g. the max-cut problem [6] and the
matrix cut-norm problem [1]. In particular we shall discuss two models in this subsection:

(B1) max F (x1, x2, . . . , xd)
s.t. xi ∈ Bni , i = 1, 2, . . . , d;

(B2) max f(x) = F (x, x, . . . , x︸ ︷︷ ︸
d

)

s.t. x ∈ Bn.

When d = 2, (B1) is to compute the matrix ∞ 7→ 1 norm, which is related to so called matrix
cut-norm problem. The current best approximation ratio is 0.56, due to Alon and Naor [1]. When
d = 3, (B1) is a slight generalization of the model considered by Khot and Naor [13], where F
was assumed to be super-symmetric and square-free. The approximation ratio estimated in [13]

is Θ
(√

lnn1
n1

)
, which is the best bound till now. Recently, He, Li, and Zhang [9] proposed a

14



polynomial-time randomized approximation algorithm for (B1) for any fixed degree d, with ap-

proximation performance ratio Θ
(∏d−2

i=1

√
1
ni

)
. The results in this subsection will improve this

approximation ratio for fixed d, thanks to Theorem 2.1.

Algorithm B1 (Randomized Algorithm for (B1))
1. Sort and rename the dimensions if necessary, so as to satisfy n1 ≤ n2 ≤ · · · ≤ nd.

2. Randomly and independently generate ξi ∼ Bni for i = 1, 2, . . . , d− 2.

3. Solve the following bilinear form optimization problem

max F (ξ1, ξ2, . . . , ξd−2, xd−1, xd)
s.t. xd−1 ∈ Bnd−1 , xd ∈ Bnd

using the deterministic algorithm of Alon and Naor [1], and get its approximate solution
(ξd−1, ξd).

4. Compute the objective value F (ξ1, ξ2, . . . , ξd).

5. Repeat the above procedures
∏d−2
i=1 n

δ
i

0.03 (c1(δ))d−2 ln 1
ε times for any constant δ ∈

(
0, 1

2

)
and choose

a solution whose objective function is the largest.

We remark that Algorithm B1 was already mentioned in [13] for odd d, where a similar order
of approximation bound as in Theorem 4.1 was suggested; however, no explicit polynomial-time
algorithm and the detailed proofs of approximation guarantee were provided. The approximation
ratio for Algorithm B1 and its proof are in the following theorem.

Theorem 4.1 Algorithm B1 solves (B1) in polynomial-time with probability at least 1− ε, and its

approximation performance ratio is δ
d−2
2
∏d−2
i=1

√
lnni
ni

.

The proof is based on mathematical induction. Essentially, if an algorithm solves (B1) of order
d− 1 approximately with an approximation ratio τ , then there is an algorithm solves (B1) of order

d approximately with an approximation ratio τ
√

δ lnn
n , where n is the dimension of the additional

order. Proof. For given problem degree d, the proof is based on induction on t = 2, 3, . . . d. Suppose
(ξ1, ξ2, . . . , ξd) is the approximate solution generated by Algorithm B1. For t = 2, 3, . . . , d, we treat
(ξ1, ξ2, . . . , ξd−t) as given parameters and define the following problems

(Dt) max F (ξ1, ξ2, . . . , ξd−t, xd−t+1, xd−t+2 . . . , xd)
s.t. xi ∈ Bni , i = d− t+ 1, d− t+ 2, . . . , d,

whose optimal value is denoted by v(Dt). By applying Algorithm B1 to (Dt), (ξd−t+1, ξd−t, . . . , ξd)
can be viewed as an approximate solution generated. In the remaining, we shall prove by induction
that for each t = 2, 3, . . . , d,

Prob
(ξd−t+1,ξd−t+2,...,ξd)

{
F (ξ1, ξ2, . . . , ξd) ≥ δ

t−2
2

d−2∏
i=d−t+1

√
lnni
ni

v(Dt)

}
≥ 0.03 (c1(δ))t−2∏d−2

i=d−t+1 n
δ
i

. (14)

In other words, (ξd−t+1, ξd−t+2, . . . , ξd) has a non-trivial probability to be a δ
t−2
2
∏d−2
i=d−t+1

√
lnni
ni

-

approximate solution of (Dt).
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For the initial case t = 2, the deterministic algorithm by Alon and Naor [1] (Step 3 of Algo-
rithm B1) guarantees a constant ratio, i.e., F (ξ1, ξ2, . . . , ξd) ≥ 0.03 v(D2), implying (14). Suppose
now (14) holds for t− 1. To prove that (14) holds for t, we notice that (ξ1, ξ2, . . . , ξd−t) are given
fixed parameters. Denote (zd−t+1, zd−t+2 . . . , zd) to be an optimal solution of (Dt), and define the
following events

E3 =

{
z ∈ Bnd−t+1

∣∣∣∣∣F (ξ1, . . . , ξd−t, z, zd−t+2 . . . , zd) ≥

√
δ lnnd−t+1

nd−t+1
v(Dt)

}
;

E4 =

{
ξd−t+1 ∈ E3, ξ

d−t+2 ∈ Bnd−t+2 , . . . , ξd ∈ Bnd
∣∣∣∣∣

F (ξ1, . . . , ξd) ≥ δ
t−3
2

d−2∏
i=d−t+2

√
lnni
ni

F (ξ1, . . . , ξd−t, ξd−t+1, zd−t+2 . . . , zd)

}
.

Then we have

Prob
(ξd−t+1,...,ξd)

{
F (ξ1, . . . , ξd) ≥ δ

t−2
2

d−2∏
i=d−t+1

√
lnni
ni

v(Dt)

}
≥ Prob

(ξd−t+1,...,ξd)

{
(ξd−t+1, . . . , ξd) ∈ E4

∣∣∣ ξd−t+1 ∈ E3

}
· Prob
ξd−t+1

{
ξd−t+1 ∈ E3

}
. (15)

To lower bound (15), first note that (zd−t+2, . . . , zd) is a feasible solution of (Dt−1), and so we have

Prob
(ξd−t+1,...,ξd)

{
(ξd−t+1, . . . , ξd) ∈ E4

∣∣∣ ξd−t+1 ∈ E3

}
≥ Prob

(ξd−t+1,...,ξd)

{
F (ξ1, . . . , ξd) ≥ δ

t−3
2

d−2∏
i=d−t+2

√
lnni
ni

v(Dt−1)

∣∣∣∣∣ ξd−t+1 ∈ E3

}

≥ 0.03 (c1(δ))t−3∏d−2
i=d−t+2 n

δ
i

,

where the last inequality is due to the induction assumption on t− 1, and Proposition 2.6 for joint
conditional probability with ξ = (ξd−t+2, . . . , ξd) and η = ξd−t+1. Secondly, we have

Prob
ξd−t+1

{
ξd−t+1 ∈ E3

}
= Prob

ξd−t+1

{
F (ξ1, . . . , ξd−t+1, zd−t+2, . . . , zd) ≥

√
δ lnnd−t+1

nd−t+1
F (ξ1, . . . , ξd−t, zd−t+1, . . . , zd)

}

= Prob
ξd−t+1

{
F (ξ1, . . . , ξd−t+1, zd−t+2, . . . , zd) ≥

√
δ lnnd−t+1

nd−t+1
‖F (ξ1, . . . , ξd−t, ·, zd−t+2, . . . , zd)‖1

}

≥ c1(δ)

nδd−t+1

,

where the last inequality is due to Theorem 2.1 for the case d = 1. With the above two facts, we
can lower bound the right hand side of (15), and conclude

Prob
(ξd−t+1,...,ξd)

{
F (ξ1, . . . , ξd) ≥ δ

t−2
2

d−2∏
i=d−t+1

√
lnni
ni

v(Dt)

}
≥ 0.03 (c1(δ))t−3∏d−2

i=d−t+2 n
δ
i

· c1(δ)

nδd−t+1

=
0.03 (c1(δ))t−2∏d−2

i=d−t+1 n
δ
i

.
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As (Dd) is exactly (B1), Algorithm B1 solves (B1) approximately with probability at least 1− ε. �

We remark that theoretically we may get a better approximate solution, using the 0.56-randomized
algorithm in [1] to replace the subroutine in Step 3 of Algorithm B1, though that algorithm is quite
complicated. In a similar vein, we obtain approximation results for (B2).

Algorithm B2 (Randomized Algorithm for (B2))
1. Randomly generate ξ ∼ Bn and compute f(ξ).

2. Repeat this procedure 9d2(d!)236d

2
√

3−3
ln 1

ε times and choose a solution whose objective function

is the largest.

The model (B2) has been studied extensively in the quadratic cases, i.e., d = 2. Goemans
and Williamson [6] gave a 0.878-approximation ratio for the case F being the Laplacian of a
given graph. Later, Nesterov [19] gave a 0.63-approximation ratio for the case F being positive
semidefinite. For diagonal-free matrix, the best possible approximation ratio is Θ(1/ lnn), due
to Charikar and Wirth [5], which is also known to be tight. For d = 3 and F is square-free,

Khot and Naor [13] gave an Θ

(√
lnn
n

)
-approximation bound. They also pointed out an iterative

procedure to get an Θ
(

lnd/2−1 n
nd/2−1

)
-approximation bound for odd d, which requires a linkage between

multilinear tensor function and homogeneous polynomial of any degree (see Lemma 1 of [8]). For
general d, He, Li, and Zhang [9] proposed polynomial-time randomized approximation algorithms

with approximation ratio Θ
(
n−

d−2
2

)
when F is square-free for odd d; however for even d, they

can only propose a relative approximation ratio Θ
(
n−

d−2
2

)
. Now, by virtue of Theorem 3.1 (more

precisely Proposition 3.3), since ‖F‖1 is an upper bound for the optimal value of (B2), absolute
approximation ratios are also established when d is even, as shown below.

Theorem 4.2 When d is even and F is square-free, Algorithm B2 solves (B2) in polynomial-time

(in terms of ln 1
ε ) with probability at least 1− ε, and approximation performance ratio

√
d!

16nd
.

4.2 Polynomial optimization over hyperspheres.

Polynomial function optimization over hyperspheres have much applications in biomedical engi-
neering, material sciences, numerical linear algebra, among many others. Readers are referred
to [8, 15, 16] and references therein for more information. Let us consider:

(S1) max F (x1, x2, . . . , xd)
s.t. xi ∈ Sni , i = 1, 2, . . . , d;

(S2) max f(x) = F (x, x, . . . , x︸ ︷︷ ︸
d

)

s.t. x ∈ Sn.

When d = 2, (S1) and (S2) reduce to computing matrix spectrum norms and can be solved in
polynomial-time. However they are NP-hard when d ≥ 3. For general d, (S2) is to compute the
largest eigenvalue of the tensor F . As far as approximation algorithms are concerned, He, Li,
and Zhang [8] proposed polynomial-time approximation algorithms for (S1) with approximation

ratio Θ
(∏d−2

i=1

√
1
ni

)
. In [8], a generic linkage relating (S2) and (S1) is established. This linkage
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enables one to get a solution with the same approximation ratio (relative ratio for even d though)
for (S2) whenever a solution with an approximation ratio for (S1) is available. Therefore, let us

now focus on (S1). For (S1), recently So [21] improved the result of [8] from Θ
(∏d−2

i=1

√
1
ni

)
to

Θ
(∏d−2

i=1

√
lnni
ni

)
. Unfortunately, the method in [21] relies on the equivalence (polynomial-time

reduction) between convex optimization and membership oracle queries using the ellipsoid method,
and it is computationally impractical. On the other hand, the algorithm that we present below is
straightforward, while retaining the same quality of approximation as the result in [21].

Algorithm S1 (Randomized Algorithm for (S1))
1. Sort and rename the dimensions if necessary, so as to satisfy n1 ≤ n2 ≤ · · · ≤ nd.

2. Randomly and independently generate ηi ∼ Sni for i = 1, 2, . . . , d− 2.

3. Solve the largest singular value problem

max F (η1, η2, . . . , ηd−2, xd−1, xd)
s.t. xd−1 ∈ Snd−1 , xd ∈ Snd ,

and get its optimal solution (ηd−1, ηd).

4. Compute the objective value F (η1, η2, . . . , ηd).

5. Repeat the above procedures
∏d−2
i=1 n

2γ
i

√
lnni

(c2(γ))d−2 ln 1
ε times for any constant γ ∈ (0, n1

lnn1
) and

choose a solution whose objective function is the largest.

Theorem 4.3 Algorithm S1 solves (S1) in polynomial-time with probability at least 1 − ε, and

approximation performance ratio γ
d−2
2
∏d−2
i=1

√
lnni
ni

.

The proof is similar to that for Theorem 4.1, and is omitted here.

4.3 Polynomial function mixed integer programming.

This last subsection deals with optimization of polynomial functions under binary variables and
variables with spherical constraints mixed up. Such problems have applications in matrix combi-
natorial problem, vector-valued maximum cut problem; see e.g. [9]. In [9], the authors considered

(M1) max F (x1, x2, . . . , xd, y1, y2, . . . , yd
′
)

s.t. xi ∈ Bni , i = 1, 2, . . . , d; yj ∈ Smj , j = 1, 2, . . . , d′;
(M2) max F (x, x, . . . , x︸ ︷︷ ︸

d

, y, y, . . . , y︸ ︷︷ ︸
d′

)

s.t. x ∈ Bn, y ∈ Sm;

(M3) max F (x1, x1, . . . , x1︸ ︷︷ ︸
d1

, . . . , xs, xs, . . . , xs︸ ︷︷ ︸
ds

, y1, y1, . . . , y1︸ ︷︷ ︸
d′1

, . . . , yt, yt, . . . , yt︸ ︷︷ ︸
d′t

)

s.t. xi ∈ Bni , i = 1, 2, . . . , s; yj ∈ Smj , j = 1, 2, . . . , t;

and proposed polynomial-time randomized approximation algorithms when the tensor F is square-
free in x (the binary part). In fact, (M3) is a generalization of (M1) and (M2), and it can also be
regarded as a generalization of (B1), (B2), (S1) and (S2) as well. Essentially the approximative
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results can be applied by using the linkage we mentioned earlier (see [8]) if approximation result for
(M1) can be established. In fact, (M1) plays the role as a cornerstone for the whole construction.

The approximation ratio for (M1) derived in [9] is Θ
(∏d−1

i=1

√
1
ni

∏d′−1
j=1

√
1
mj

)
. The results in

Section 2 lead to the following improvements:

Theorem 4.4 Denote N to be the set of the d+d′−2 smallest numbers in {n1, . . . , nd,m1, . . . ,md′}.
(M1) admits a polynomial-time randomized approximation algorithm with approximation perfor-

mance ratio Θ

(∏
n∈N

√
lnn
n

)
.

The method for solving (M1) is similar to that for solving (B1) and (S1), and we shall not repeat the
detailed discussions. Basically we shall sample multiple times to get a solution with high probability.
For the d+d′−2 numbers in N , if it is the dimension of binary constraints, the algorithm uniformly
picks a vector in the discrete hypercube; and if it is the dimension of spherical constraints, the
algorithms uniformly pick a vector in the hypersphere. All the randomized procedures will be
done independent from each other. As the first inductive step, we will then come across a bilinear
function optimization problem in either of the three possible cases:

• maxx∈Bn,y∈Bm x
TFy, which can be solved by the algorithm proposed in Alon and Naor [1] to

get a solution with the guaranteed constant approximation ratio;

• maxx∈Bn,y∈Sm x
TFy, which can be solved by the algorithm proposed in He, Li, and Zhang [9]

to get a solution with the guaranteed constant approximation ratio;

• maxx∈Sn,y∈Sm x
TFy, which can be solved by computing the largest singular value of matrix F .

5 Summary and concluding remark.

To put the results presented in the paper in perspective, in this section let us highlight and briefly
summarize our new findings.

We set out to explore the probability bound in the form of Prob ξ∼S0 {f(ξ) ≥ τ maxx∈S f(x)} ≥ θ
with S0 ⊆ S, denoted by (1) in this paper. The function F in our discussion is either a multilinear
tensor form or a homogeneous polynomial function. To enable probability bounds in the form
of (1), we will need some structure in place. In particular, we consider the choice of the structural
sets S0 and S respectively as follows:

1. Consider S = Bn1×n2×···×nd and S0 = {X ∈ S | rank (X) = 1}, and F ∈ Rn1×n2×···×nd . If we
draw ξ uniformly over S0, then

Prob

{
F • ξ ≥ cd−1

3

√
δ lnnd∏d
i=1 ni

max
X∈S

F •X = cd−1
3

√
δ lnnd∏d
i=1 ni

‖F‖1

}
≥ c1(δ)c2d−2

3

nδd
∏d
i=2 n

i−1
i

,

where c1(δ) is a constant depending only on constant δ ∈ (0, 1
2) and c3 = 8

25
√

5
. Moreover, the

order of
√

lnnd∏d
i=1 ni

cannot be improved if the bound is required to be at least a polynomial

function of 1
nd

.

2. Consider S = {X ∈ Rn1×n2×···×nd | X • X = 1} and S0 = {X ∈ S | rank (X) = 1}, and
F ∈ Rn1×n2×···×nd . If we draw ξ uniformly over S0, then

Prob

{
F • ξ ≥ 1

2
d−1
2

√
γ lnnd∏d
i=1 ni

max
X∈S

F •X =
1

2
d−1
2

√
γ lnnd∏d
i=1 ni

‖F‖2

}
≥ c2(γ)

4d−1n2γ
d

√
lnnd

∏d−1
i=1 ni

,
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where c2(γ) is a constant depended only on constant γ ∈ (0, nd
lnnd

). Moreover, the order of√
lnnd∏d
i=1 ni

cannot be improved if the bound is required to be at least a polynomial function of

1
nd

.

3. Consider S = {X ∈ Bnd | X is super-symmetric} and S0 = {X ∈ S | rank (X) = 1}, and

a square-free super-symmetric tensor F ∈ Rnd . If we draw ξ uniformly over S0, then there
exists a universal constant c > 0, such that

Prob

{
F • ξ ≥

√
d!

16nd
max
X∈S

F •X =

√
d!

16nd
‖F‖1

}
≥ c.

Moreover, when d = 2 or d = 4, the order of n−
d
2 cannot be improved for any positive bound.

4. Consider S = {X ∈ Rnd : X •X = 1, X is super-symmetric} and S0 = {X ∈ S | rank (X) =

1}, and a square-free super-symmetric tensor F ∈ Rnd . If we draw ξ uniformly over S0, then
there exists a universal constant c > 0, such that

Prob

{
F • ξ ≥

√
d!

48(4n)d
max
X∈S

F •X =

√
d!

48(4n)d
‖F‖2

}
≥ c.

Applying the results straightforwardly, we obtain polynomial-time randomized approximation al-
gorithms for solving various polynomial optimization models with high probability. Specifically,
our results include:

1. Θ
(∏d−2

i=1

√
lnni
ni

)
-approximation ratio for

max F (x1, x2, . . . , xd)
s.t. xi ∈ Bni , i = 1, 2, . . . , d.

This ratio improves that of Θ
(∏d−2

i=1

√
1
ni

)
proposed by He, Li, and Zhang [9].

2. Θ
(
n−

d
2

)
-approximation ratio for

max f(x) := F (x, x, . . . , x︸ ︷︷ ︸
d

)

s.t. x ∈ Bn,

where f(x) is a homogeneous polynomial function with the tensor F being square-free. This
ratio is new. In the literature, when d ≥ 4 and is even, the only previous approximation ratio
for this model was in He, Li, and Zhang [9]; however, the ratio there is a relative one.

3. Θ
(∏d−2

i=1

√
lnni
ni

)
-approximation ratio for

max F (x1, x2, . . . , xd)
s.t. xi ∈ Sni , i = 1, 2, . . . , d.

This improves the
∏d−2
i=1

√
1
ni

approximation ratio in [8], and achieves the same theoretical

bound as in So [21]. However, the algorithm proposed here is straightforward to implement,
while the one in [21] is very involved.
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4. Θ

(∏
n∈N

√
lnn
n

)
-approximation ratio for

max F (x1, x2, . . . , xd, y1, y2, . . . , yd
′
)

s.t. xi ∈ Bni , i = 1, 2, . . . , d,
yj ∈ Smj , j = 1, 2, . . . , d′,

where N is the set of the d+ d′− 2 smallest numbers in {n1, . . . , nd,m1, . . . ,md′}. This ratio

improves that of Θ
(∏d−1

i=1

√
1
ni

∏d′−1
j=1

√
1
mj

)
proposed in [9].

Before concluding the whole paper, let us finally remark the results in this paper are also
connected to Khintchine’s inequality [12], which asserts that:

If ξ = (ξ1, ξ2, . . . , ξn)T are i.i.d. symmetric Bernoulli random variables, then for any
p > 0, there exist constants bp and cp such that for any vector a ∈ Rn,

bp‖a‖2 ≤
(
E
∣∣ξTa

∣∣p) 1
p ≤ cp‖a‖2. (16)

Since Khintchine’s result in early 1923, much effort has been on determining the sharp values
of the constants bp and cp or some sort of extensions of Khintchine’s inequality. In particular,
similar inequality in the matrix case (the vector a is replaced by a matrix) has been established.
Recently, So [22] proved a conjecture proposed by Nemirovskii through matrix version Khintchine’s
inequality.

Observe that Lemma 2.4 is exactly the lower bound part of Khintchine’s inequality with p = 1.
Furthermore our new probability inequality (Theorem 3.1) also implies the lower bound part of
Khintchine’s inequality where the random variables are endowed with some dependent structures.

Corollary 5.1 Suppose F ∈ Rnd is a square-free super-symmetric tensor of order d, and Ξ =
ξ ⊗ ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸

d

, where ξ = (ξ1, ξ2, . . . , ξn)T are independent random variables with Eξi = 0,Eξ2
i =

1,Eξ4
i ≤ κ. Then for any p > 0, there exists a constant bp =

(
2
√

3−3

4p+d91+dd2(d!)2−
p
2 κ(d+

p
2 )

) 1
p

, such that

bp‖F‖2 ≤ (E|F • Ξ|p)
1
p . (17)

To see why, by Theorem 3.1 we have Prob
{
|F • Ξ| ≥

√
d!‖F‖2
4
√
κ

}
≥ 2

√
3−3

9d2(d!)236dκd
. Therefore

E|F • Ξ|p ≥ Prob

{
|F • Ξ|p ≥

(√
d!‖F‖2
4
√
κ

)p}
·

(√
d!‖F‖2
4
√
κ

)p
≥ 2

√
3− 3

9d2(d!)236dκd

(√
d!‖F‖2
4
√
κ

)p
,

which implies (17).
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A Proofs of Theorem 3.1 and Proposition 3.2.

The whole appendix is devoted to the proof of Theorem 3.1, among which Proposition 3.2 is proved

as a byproduct. First, we observe that ‖F‖2 ≥ n−
d
2 ‖F‖1 since F ∈ Rnd , and thus (13) can be

immediately derived from (12). Hence we shall focus on (12).
Furthermore, we observe that Theorem 3.1 is almost equivalent to the fact that any homogeneous

polynomial function of independent random variables with bounded kurtosis should also have a
bounded kurtosis itself, as formulated as follows:

Theorem A.1 Let F ∈ Rnd be a square-free super-symmetric tensor of order d, and let f(x) =
F (x, x, . . . , x) be a homogeneous polynomial function induced by F . If ξ = (ξ1, ξ2, . . . , ξn)T are
independent random variables with Eξi = 0,Eξ2

i = 1,Eξ4
i ≤ κ for all i = 1, 2, . . . , n, then Ef4(ξ) ≤

d2(d!)236dκd(Ef2(ξ))2.

Before proving the theorem, let us note another important fact required in the proof, namely if
a random variable has a bounded kurtosis, then it has a constant probability above the mean plus
some constant proportion of the standard deviation.

Lemma A.2 For any random variable z with its kurtosis upper bounded by κ > 0, namely

E[z − Ez]4 ≤ κ
(
E[z − Ez]2

)2
,

we have

Prob

{
z ≥ Ez +

√
Var(z)

4
√
κ

}
≥ 2
√

3− 3

9κ
.
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Proof. By normalizing z, i.e., letting y = (z − Ez)/
√

Var(z), we shall have Ey = 0, Ey2 = 1 and

Ey4 ≤ κ. Thus we only need to show Prob
{
y ≥ 1

4
√
κ

}
≥ 2

√
3−3

9κ .

Denote x = t− y, where the constant t > 0 will be decided later. We have

Ex = t− Ey = t,

Ex2 = t2 − 2tEy + Ey2 = t2 + 1,

Ex4 = t4 − 4t3Ey + 6t2Ey2 − 4tEy3 + Ey4 ≤ t4 + 6t2 + 4t
√
κ+ κ,

where (Ey3)2 ≤ Ey2Ey4 ≤ κ is applied in the last inequality.
By applying Theorem 2.3 of [11], for any constant v > 0

Prob {y ≥ t} = Prob {x ≤ 0}

≥ 4(2
√

3− 3)

9

(
−2Ex

v
+

3Ex2

v2
− Ex4

v4

)
≥ 4(2

√
3− 3)

9

(
−2t

v
+

3t2 + 3

v2
− t4 + 6t2 + 4t

√
κ+ κ

v4

)
(

let t =
1

4
√
κ

and v =
√
κ

)
=

4(2
√

3− 3)

9

(
− 1

2κ
+

3

16κ2
+

3

κ
− 1

256κ4
− 6

16κ3
− 1

κ2
− 1

κ

)
=

4(2
√

3− 3)

9

(
24

16κ
− 13

16κ2
− 6

16κ3
− 1

256κ4

)
(
notice κ ≥ Ey4 ≥ (Ey2)2 = 1

)
≥ 4(2

√
3− 3)

9
· 4

16κ
=

2
√

3− 3

9κ
.

�

Let us now prove Theorem A.1. We start with a special case when d = 2 and ξ are symmetric
Bernoulli random variables, which helps to illustrate the ideas underlying the proof for the general
case.

Proposition A.3 Let F ∈ Rn×n be a diagonal-free symmetric matrix, and let f(x) = xTFx. If
ξ ∼ Bn, then Ef4(ξ) ≤ 15(Ef2(ξ))2.

Proof. Rewrite y = f(ξ) =
∑

σ aσξ
σ, where σ ∈ Π := {(1, 2), (1, 3), . . . , (n−1, n)} and ξ(i,j) := ξiξj .

Since Eξdi = 0 for odd d and Eξdi = 1 for even d, the non-zero terms in Ey4 are all in the forms of
aijaijaijaij , aijaijaikaik, aijaijak`ak` and aijaikaj`ak`, where we assume i, j, k and ` are distinctive.
Let us count the different types of terms.

Type A: aijaijaijaij . The total number of such type of terms is
(
n
2

)
;

Type B: aijaijaikaik. The total number of such type of terms is n ·
(
n−1

2

)
·
(

4
2

)
;

Type C: aijaijak`ak`. The total number of such type of terms is
(
n
4

)
· 3 ·

(
4
2

)
;

Type D: aijaikaj`ak`. The total number of such type of terms is
(
n
4

)
· 3 · 4!.

Notice that

(Ey2)2 =

(∑
σ∈Π

a2
σ

)2

=
∑
σ∈Π

a4
σ + 2

∑
σ1 6=σ2

a2
σ1a

2
σ2 =: ‘Part I’ + ‘Part II’.
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Type A terms constitute exactly ‘Part I’ in (Ey2)2; each item of Types B and C will appear exactly
once in ‘Part II’ of (Ey2)2; each term of Type D can be bounded by an average of two terms in
‘Part II’ of (Ey2)2 since aijaikaj`ak` ≤ (a2

ija
2
k` + a2

ika
2
j`)/2. The number of the terms of Types B, C

and D is:

n ·
(
n− 1

2

)(
4

2

)
+

(
n

4

)
· 3 ·

(
4

2

)
+

(
n

4

)
· 3 · 4! =

n(n− 1)(n− 2)(15n− 33)

4
=: N

and there are (
n

2

)
·
((

n

2

)
− 1

)
=
n(n− 1)(n− 2)(n+ 1)

4
=: N ′

terms in ‘Part II’ of (Ey2)2. Clearly N ≤ 15N ′, which leads to Ey4 ≤ 15(Ey2)2. �

We are now in a position to prove Proposition 3.2, which follows from Proposition A.3 and
Lemma A.2.

Proof of Proposition 3.2 Proof. Since F is diagonal-free and symmetric, it is easy to verify
E[ξTFξ] = 0 and

Var(ξTFξ) =
∑
σ∈Π

a2
σ = 4

∑
σ∈Π

(aσ/2)2 = 2‖F‖22.

By Lemma A.2 we have Prob

{
ξTFξ ≥

√
Var(ξTFξ)

4
√

15

}
≥ 2

√
3−3

135 , the desired inequality holds. �

Let us now come to the proof of main theorem in the appendix.
Proof of Theorem A.1 Proof. Let I := {1, 2, . . . , n} be the index set, and Π be the set

containing all the combinations of d distinctive indices in I. Obviously |Π| =
(
n
d

)
. For any π ∈ Π,

we denote xπ :=
∏
i∈π xi and xπ1+π2 := xπ1xπ2 (e.g. x{1,2} = x1x2 and x{1,2}+{1,3} = x{1,2}x{1,3} =

x1x2 · x1x3 = x2
1x2x3).

Since F is square-free and super-symmetric, y can be written as
∑

π∈Π aπx
π, or simply

∑
π aπx

π

(whenever we write summation over π, it means the summation over all π ∈ Π). We thus have

Ey2 = E

[∑
π1,π2

aπ1x
π1aπ2x

π2

]
=
∑
π1,π2

aπ1aπ2Ex
π1+π2 =

∑
π1=π2

aπ1aπ2Ex
π1+π2 =

∑
π

a2
π.

Our task is to bound

Ey4 = E

[ ∑
π1,π2,π3,π4

aπ1x
π1aπ2x

π2aπ3x
π3aπ4x

π4

]
=

∑
π1,π2,π3,π4

aπ1aπ2aπ3aπ4 Ex
π1+π2+π3+π4 . (18)

For any combination quadruple {π1, π2, π3, π4}, there are in total 4d indices, with each index
appearing at most 4 times. Suppose there are a number of indices appearing 4 times, b num-
ber of indices appearing 3 times, c number of indices appearing twice, and g number of indices
appearing once. Clearly 4a + 3b + 2c + g = 4d. In order to compute the summation of all the
terms aπ1aπ2aπ3aπ4 Ex

π1+π2+π3+π4 over π1, π2, π3, π4 ∈ Π in (18), we shall group them according to
different {a, b, c, g}.

1. g ≥ 1: as we know Exi = 0 for all i ∈ I, all the terms in this group will vanish.

2. b = c = g = 0: the summation of all the terms in this group is∑
π1=π2=π3=π4

aπ1aπ2aπ3aπ4 Ex
π1+π2+π3+π4 =

∑
π1

a4
π1Ex

4π1 ≤ κd
∑
π

a4
π.
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3. g = 0 and b+c ≥ 1: we shall classify all the terms in this group step by step. In the following,
we assume |Π| ≥ 2 and n ≥ d+ 1 to avoid triviality.

• It is clear that 4a+ 3b+ 2c = 4d, 0 ≤ a ≤ d−1, 0 ≤ b ≤ (4d−4a)/3 and b must be even.
In this group, the number of different {a, b, c} is at most

∑d−1
a=0

(
1 + b4d−4a

6 c
)
≤ d2.

• For any given triple {a, b, c}, there are total
(
n
a

)(
n−a
b

)(
n−a−b

c

)
number of distinctive ways

to assign indices. Clearly, we have
(
n
a

)(
n−a
b

)(
n−a−b

c

)
≤ n!/(n−a−b−c)! ≤ n!/(n−2d)+!.

• For any given a indices appearing 4 times, b indices appearing 3 times, and c indices
appearing twice, we shall count how many distinctive ways they can form a particular
combination quadruple {π1, π2, π3, π4} (note that orders do count). For the indices
appearing 4 times, they do not have choice but to be located in {π1, π2, π3, π4} each
once; for indices appearing 3 times, each has at most 4 choices; for indices appearing
twice, each has at most 6 choices. Therefore, the total number of distinctive ways to
formulate the combination of quadruples is upper bounded by 4b6c ≤ 62d.

• For any given combination quadruple {π1, π2, π3, π4}, noticing that (Ex3
i )

2 ≤ Ex2
i Ex

4
i ≤

κ for all i ∈ I, we have |Exπ1+π2+π3+π4 | ≤ κa · (
√
κ)b · 1c = κa+b/2 ≤ κd.

• For any given combination quadruple {π1, π2, π3, π4}, in this group each combination
can appear at most twice. Specifically, if we assume i 6= j (implying πi 6= πj), then the
forms of {π1, π1, π1, π2} and {π1, π1, π1, π1} do not appear. The only possible forms are
{π1, π2, π3, π4}, {π1, π1, π2, π3} and {π1, π1, π2, π2}. We notice that

aπ1aπ2aπ3aπ4 ≤ (a2
π1a

2
π2 + a2

π1a
2
π3 + a2

π1a
2
π4 + a2

π2a
2
π3 + a2

π2a
2
π4 + a2

π3a
2
π4)/6,

aπ1aπ1aπ2aπ3 ≤ (a2
π1a

2
π2 + a2

π1a
2
π3)/2,

aπ1aπ1aπ2aπ2 = a2
π1a

2
π2 .

Therefore, in any possible form, each aπ1aπ2aπ3aπ4 can be on average upper bounded by
one item a2

π1a
2
π2(π1 6= π2) in

∑
π1 6=π2 a

2
π1a

2
π2 .

Overall, in this group, by noticing the symmetry of Π, the summation of all the terms is upper
bounded by d2 · n!

(n−2d)+! ·6
2d ·κd number of items in form of a2

π1a
2
π2(π1 6= π2) in

∑
π1 6=π2 a

2
π1a

2
π2 .

Notice that there are in total |Π|(|Π| − 1)/2 = 1
2

(
n
d

) ((
n
d

)
− 1
)

items in
∑

π1 6=π2 a
2
π1a

2
π2 , and

each item is evenly distributed. By symmetry, the summation of all the terms in this group
is upper bounded by

d2 · n!
(n−2d)+! · 6

2d · κd
1
2

(
n
d

) ((
n
d

)
− 1
) ∑

π1 6=π2

a2
π1a

2
π2 ≤ d

2(d!)236dκd · 2
∑
π1 6=π2

a2
π1a

2
π2 .

Finally, we are able to bound Ey4 by

Ey4 ≤ κd
∑
π

a4
π + d2(d!)236dκd · 2

∑
π1 6=π2

a2
π1a

2
π2

≤ d2(d!)236dκd

∑
π

a4
π + 2

∑
π1 6=π2

a2
π1a

2
π2


= d2(d!)236dκd

(∑
π

a2
π

)2

= d2(d!)236dκd(Ey2)2.
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Putting the pieces together, the theorem follows. �

Finally, combining Theorem A.1 and Lemma A.2, and noticing Var(f(ξ)) = d!‖F‖22 in Theo-
rem 3.1, lead us to the probability bound (12) in Theorem 3.1, which concludes the whole proof.
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