30 research outputs found

    Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury.

    Get PDF
    Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays important roles in regulating immune and metabolic homeostasis. Activation of the mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) transcription factors are crucial for the regulation of immune cell function. Here, we investigated the mechanism by which the ATF3/mTOR/HIF-1 axis regulates immune responses in a liver ischemia/reperfusion injury (IRI) model. Deletion of ATF3 exacerbated liver damage, as evidenced by increased levels of serum ALT, intrahepatic macrophage/neutrophil trafficking, hepatocellular apoptosis, and the upregulation of pro-inflammatory mediators. ATF3 deficiency promoted mTOR and p70S6K phosphorylation, activated high mobility group box 1 (HMGB1) and TLR4, inhibited prolyl-hydroxylase 1 (PHD1), and increased HIF-1α activity, leading to Foxp3 downregulation and RORγt and IL-17A upregulation in IRI livers. Blocking mTOR or p70S6K in ATF3 knockout (KO) mice or bone marrow-derived macrophages (BMMs) downregulated HMGB1, TLR4, and HIF-1α and upregulated PHD1, increasing Foxp3 and decreasing IL-17A levels in vitro. Silencing of HIF-1α in ATF3 KO mice ameliorated IRI-induced liver damage in parallel with the downregulation of IL-17A in ATF3-deficient mice. These findings demonstrated that ATF3 deficiency activated mTOR/p70S6K/HIF-1α signaling, which was crucial for the modulation of TLR4-driven inflammatory responses and T cell development. The present study provides potential therapeutic targets for the treatment of liver IRI followed by liver transplantation

    Participatory action research on EFL students' difficulties during autodidacticism of challenging texts using cognitive, metacognitive and socio-affective reading strategies

    Get PDF
    To explore the perceptions of EFL students on reading strategies when they read challenging texts to prepare for studying in English at Glasgow University, the U

    The Dual Role of Innate Immune Response in Acetaminophen-Induced Liver Injury

    No full text
    Acetyl-para-aminophenol (APAP), a commonly used antipyretic analgesic, is becoming increasingly toxic to the liver, resulting in a high rate of acute hepatic failure in Europe and the United States. Excessive APAP metabolism in the liver develops an APAP–protein adduct, which causes oxidative stress, MPTP opening, and hepatic necrosis. HMGB-1, HSP, nDNA, mtDNA, uric acid, and ATP are DMAPs released during hepatic necrosis. DMAPs attach to TLR4-expressing immune cells such KCs, macrophages, and NK cells, activating them and causing them to secrete cytokines. Immune cells and their secreted cytokines have been demonstrated to have a dual function in acetaminophen-induced liver injury (AILI), with a role in either proinflammation or pro-regeneration, resulting in contradicting findings and some research confusion. Neutrophils, KCs, MoMFs, NK/NKT cells, γδT cells, DCs, and inflammasomes have pivotal roles in AILI. In this review, we summarize the dual role of innate immune cells involved in AILI and illustrate how these cells initiate innate immune responses that lead to persistent inflammation and liver damage. We also discuss the contradictory findings in the literature and possible protocols for better understanding the molecular regulatory mechanisms of AILI

    A Novel Method for Long Time Series Passive Microwave Soil Moisture Downscaling over Central Tibet Plateau

    No full text
    The coarse scale of passive microwave surface soil moisture (SSM) is not suitable for regional agricultural and hydrological applications such as drought monitoring and irrigation management. The optical/thermal infrared (OTI) data-based passive microwave SSM downscaling method can effectively improve its spatial resolution to fine scale for regional applications. However, the estimation capability of SSM with long time series is limited by OTI data, which are heavily polluted by clouds. To reduce the dependence of the method on OTI data, an SSM retrieval and spatio-temporal fusion model (SMRFM) is proposed in the study. Specifically, a model coupling in situ data, MODerate-resolution Imaging Spectro-radiometer (MODIS) OTI data, and topographic information is developed to retrieve MODIS SSM (1 km) using the least squares method. Then the retrieved MODIS SSM and the spatio-temporal fusion model are employed to downscale the passive microwave SSM from coarse scale to 1 km. The proposed SMRFM is implemented in a grassland dominated area over Naqu, central Tibet Plateau, for Advanced Microwave Scanning Radiometer—Earth Observing System sensor (AMSR-E) SSM downscaling in unfrozen period. The in situ SSM and Noah land surface model 0.01° SSM are used to validate the estimated MODIS SSM with long time series. The evaluations show that the estimated MODIS SSM has the same temporal resolution with AMSR-E and obtains significantly improved detailed spatial information. Moreover, the temporal accuracy of estimated MODIS SSM against in situ data (r = 0.673, μbRMSE = 0.070 m3/m3) is better than the AMSR-E (r = 0.661, μbRMSE = 0.111 m3/m3). In addition, the temporal r of estimated MODIS SSM is obviously higher than that of Noah data. Therefore, this suggests that the SMRFM can be used to estimate MODIS SSM with long time series by AMSR-E SSM downscaling in the study. Overall, the study can provide help for the development and application of microwave SSM-related scientific research at the regional scale

    A Novel Method for Long Time Series Passive Microwave Soil Moisture Downscaling over Central Tibet Plateau

    No full text
    The coarse scale of passive microwave surface soil moisture (SSM) is not suitable for regional agricultural and hydrological applications such as drought monitoring and irrigation management. The optical/thermal infrared (OTI) data-based passive microwave SSM downscaling method can effectively improve its spatial resolution to fine scale for regional applications. However, the estimation capability of SSM with long time series is limited by OTI data, which are heavily polluted by clouds. To reduce the dependence of the method on OTI data, an SSM retrieval and spatio-temporal fusion model (SMRFM) is proposed in the study. Specifically, a model coupling in situ data, MODerate-resolution Imaging Spectro-radiometer (MODIS) OTI data, and topographic information is developed to retrieve MODIS SSM (1 km) using the least squares method. Then the retrieved MODIS SSM and the spatio-temporal fusion model are employed to downscale the passive microwave SSM from coarse scale to 1 km. The proposed SMRFM is implemented in a grassland dominated area over Naqu, central Tibet Plateau, for Advanced Microwave Scanning Radiometer—Earth Observing System sensor (AMSR-E) SSM downscaling in unfrozen period. The in situ SSM and Noah land surface model 0.01° SSM are used to validate the estimated MODIS SSM with long time series. The evaluations show that the estimated MODIS SSM has the same temporal resolution with AMSR-E and obtains significantly improved detailed spatial information. Moreover, the temporal accuracy of estimated MODIS SSM against in situ data (r = 0.673, μbRMSE = 0.070 m3/m3) is better than the AMSR-E (r = 0.661, μbRMSE = 0.111 m3/m3). In addition, the temporal r of estimated MODIS SSM is obviously higher than that of Noah data. Therefore, this suggests that the SMRFM can be used to estimate MODIS SSM with long time series by AMSR-E SSM downscaling in the study. Overall, the study can provide help for the development and application of microwave SSM-related scientific research at the regional scale

    High mobility emissive organic semiconductor.

    No full text
    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm(2) V(-1) s(-1). Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m(-2) and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics
    corecore