20,847 research outputs found

    Gluon Transport Equation with Effective Mass and Dynamical Onset of Bose-Einstein Condensation

    Full text link
    We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose-Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.Comment: 25 pages, 8 figure

    Anomalous Chiral Transport in Heavy Ion Collisions from Anomalous-Viscous Fluid Dynamics

    Full text link
    Chiral anomaly is a fundamental aspect of quantum theories with chiral fermions. How such microscopic anomaly manifests itself in a macroscopic many-body system with chiral fermions, is a highly nontrivial question that has recently attracted significant interest. As it turns out, unusual transport currents can be induced by chiral anomaly under suitable conditions in such systems, with the notable example of the Chiral Magnetic Effect (CME) where a vector current (e.g. electric current) is generated along an external magnetic field. A lot of efforts have been made to search for CME in heavy ion collisions, by measuring the charge separation effect induced by the CME transport. A crucial challenge in such effort, is the quantitative prediction for the CME signal. In this paper, we develop the Anomalous-Viscous Fluid Dynamics (AVFD) framework, which implements the anomalous fluid dynamics to describe the evolution of fermion currents in QGP, on top of the neutral bulk background described by the VISH2+1 hydrodynamic simulations for heavy ion collisions. With this new tool, we quantitatively and systematically investigate the dependence of the CME signal to a series of theoretical inputs and associated uncertainties. With realistic estimates of initial conditions and magnetic field lifetime, the predicted CME signal is quantitatively consistent with measured change separation data in 200GeV Au-Au collisions. Based on analysis of Au-Au collisions, we further make predictions for the CME observable to be measured in the planned isobaric (Ru-Ru v.s. Zr-Zr ) collision experiment, which could provide a most decisive test of the CME in heavy ion collisions.Comment: 28 pages, 13 figures; published versio

    Quantification of Chiral Magnetic Effect from Event-by-Event Anomalous-Viscous Fluid Mechanics

    Full text link
    Chiral Magnetic Effect (CME) is the macroscopic manifestation of the fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as anomalous transport current in hydrodynamic framework. Experimental observation of CME is of great interest and significant efforts have been made to look for its signals in heavy ion collisions. Encouraging evidence of CME-induced charge separation has been reported from both RHIC and LHC, albeit with ambiguity due to potential background contributions. Crucial for addressing such issue, is the need of quantitative predictions for both CME signal and the non-CME background consistently, with sophisticated modeling tool. In this contribution we report a recently developed Anomalous Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the data-validated VISHNU bulk hydro evolution. In particular, this framework has been extended to event-by-event simulations with proper implementation of known flow-driven background contributions. We report quantitative results from such simulations and evaluate the implications for interpretations of current experimental measurements. Finally we give our prediction for the CME signal in upcoming isobaric collisions.Comment: 5 pages, 7 figures; plenary talk at CPOD 2017 conference, Stony Brook University, Stony Brook, NY. arXiv admin note: substantial text overlap with arXiv:1704.05531; text overlap with arXiv:1611.0458

    Off-Policy Evaluation of Probabilistic Identity Data in Lookalike Modeling

    Full text link
    We evaluate the impact of probabilistically-constructed digital identity data collected from Sep. to Dec. 2017 (approx.), in the context of Lookalike-targeted campaigns. The backbone of this study is a large set of probabilistically-constructed "identities", represented as small bags of cookies and mobile ad identifiers with associated metadata, that are likely all owned by the same underlying user. The identity data allows to generate "identity-based", rather than "identifier-based", user models, giving a fuller picture of the interests of the users underlying the identifiers. We employ off-policy techniques to evaluate the potential of identity-powered lookalike models without incurring the risk of allowing untested models to direct large amounts of ad spend or the large cost of performing A/B tests. We add to historical work on off-policy evaluation by noting a significant type of "finite-sample bias" that occurs for studies combining modestly-sized datasets and evaluation metrics involving rare events (e.g., conversions). We illustrate this bias using a simulation study that later informs the handling of inverse propensity weights in our analyses on real data. We demonstrate significant lift in identity-powered lookalikes versus an identity-ignorant baseline: on average ~70% lift in conversion rate. This rises to factors of ~(4-32)x for identifiers having little data themselves, but that can be inferred to belong to users with substantial data to aggregate across identifiers. This implies that identity-powered user modeling is especially important in the context of identifiers having very short lifespans (i.e., frequently churned cookies). Our work motivates and informs the use of probabilistically-constructed identities in marketing. It also deepens the canon of examples in which off-policy learning has been employed to evaluate the complex systems of the internet economy.Comment: Accepted by WSDM 201

    Quantifying the Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics

    Full text link
    In this contribution we report a recently developed Anomalous-Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the bulk expansion from data-validated VISHNU hydrodynamics. With reasonable estimates of initial conditions and magnetic field lifetime, the predicted CME signal is quantitatively consistent with change separation measurements in 200GeV Au-Au collisions at RHIC. We further develop the event-by-event AVFD simulations that allow direct evaluation of two-particle correlations arising from CME signal as well as the non-CME backgrounds. Finally we report predictions from AVFD simulations for the upcoming isobaric (Ru-Ru v.s. Zr-Zr ) collisions that could provide the critical test of the CME in heavy ion collisions.Comment: Contribution to the Proceedings of the XXVIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2017), Feb 5-11, Chicago, U.S.A. 4 pages, 6 figure
    corecore