6,188 research outputs found
Asymmetric Deep Supervised Hashing
Hashing has been widely used for large-scale approximate nearest neighbor
search because of its storage and search efficiency. Recent work has found that
deep supervised hashing can significantly outperform non-deep supervised
hashing in many applications. However, most existing deep supervised hashing
methods adopt a symmetric strategy to learn one deep hash function for both
query points and database (retrieval) points. The training of these symmetric
deep supervised hashing methods is typically time-consuming, which makes them
hard to effectively utilize the supervised information for cases with
large-scale database. In this paper, we propose a novel deep supervised hashing
method, called asymmetric deep supervised hashing (ADSH), for large-scale
nearest neighbor search. ADSH treats the query points and database points in an
asymmetric way. More specifically, ADSH learns a deep hash function only for
query points, while the hash codes for database points are directly learned.
The training of ADSH is much more efficient than that of traditional symmetric
deep supervised hashing methods. Experiments show that ADSH can achieve
state-of-the-art performance in real applications
Discovery and Identification of W' and Z' in SU(2) x SU(2) x U(1) Models at the LHC
We explore the discovery potential of W' and Z' boson searches for various
SU(2) x SU(2) x U(1) models at the Large Hadron Collider (LHC), after taking
into account the constraints from low energy precision measurements and direct
searches at both the Tevatron (1.96 TeV) and the LHC (7 TeV). In such models,
the W' and Z' bosons emerge after the electroweak symmetry is spontaneously
broken. Two patterns of the symmetry breaking are considered in this work: one
is SU(2)_L x SU(2)_2 x U(1)_X to SU(2)_L x U(1)_Y (BP-I), another is SU(2)_1 x
SU(2)_2 x U(1)_Y to SU(2)_L x U(1)_Y (BP-II). Examining the single production
channel of W' and Z' with their subsequent leptonic decays, we find that the
probability of detecting W' and Z' bosons in the considered models at the LHC
(with 14 TeV) is highly limited by the low energy precision data constraints.
We show that observing Z' alone, without seeing a W', does not rule out new
physics models with non-Abelian gauge extension, such as the phobic models in
BP-I. Models in BP-II would predict the discovery of degenerate W' and Z'
bosons at the LHC.Comment: 29 pages, including 11 figures, 3 tables, added references for
introductio
An Application of Lorentz Invariance Violation in Black Hole Thermodynamics
In this paper, we have applied the Lorentz-invariance-violation (LIV) class
of dispersion relations (DR) with the dimensionless parameter n = 2 and the
"sign of LIV" {\eta}_+ = 1, to phenomenologically study the effect of quantum
gravity in the strong gravitational field. Specifically, we have studied the
effect of the LIV-DR induced quantum gravity on the Schwarzschild black hole
thermodynamics. The result shows that the effect of the LIV-DR induced quantum
gravity speeds up the black hole evaporation, and its corresponding black hole
entropy undergoes a leading logarithmic correction to the "reduced
Bekenstein-Hawking entropy", and the ill defined situations (i.e. the
singularity problem and the critical problem) are naturally bypassed when the
LIV-DR effect is present. Also, to put our results in a proper perspective, we
have compared with the earlier findings by another quantum gravity candidate,
i.e. the generalized uncertainty principle (GUP). Finally, we conclude from the
inert remnants at the final stage of the black hole evaporation that, the GUP
as a candidate for describing quantum gravity can always do as well as the
LIV-DR by adjusting the model-dependent parameters, but in the same
model-dependent parameters the LIV-DR acts as a more suitable candidate.Comment: 18 pages, 7 figure
Continuous-variable controlled-Z gate using an atomic ensemble
The continuous-variable controlled-Z gate is a canonical two-mode gate for
universal continuous-variable quantum computation. It is considered as one of
the most fundamental continuous-variable quantum gates. Here we present a
scheme for realizing continuous-variable controlled-Z gate between two optical
beams using an atomic ensemble. The gate is performed by simply sending the two
beams propagating in two orthogonal directions twice through a spin-squeezed
atomic medium. Its fidelity can run up to one if the input atomic state is
infinitely squeezed. Considering the noise effects due to atomic decoherence
and light losses, we show that the observed fidelities of the scheme are still
quite high within presently available techniques.Comment: 7 pages, 3 figures, to appear in Physical Review
- …