623 research outputs found

    Coherence assisted resonance with sub-lifetime-limited linewidth

    Get PDF
    We demonstrate a novel approach to obtain resonance linewidth below that limited by coherence lifetime. Cross correlation between induced intensity modulation of two lasers coupling the target resonance exhibits a narrow spectrum. 1/30 of the lifetime-limited width was achieved in a proof-of-principle experiment where two ground states are the target resonance levels. Attainable linewidth is only limited by laser shot noise in principle. Experimental results agree with an intuitive analytical model and numerical calculations qualitatively. This technique can be easily implemented and should be applicable to many atomic, molecular and solid state spin systems for spectroscopy, metrology and resonance based sensing and imaging.Comment: 5 pages 5 figure

    Parity-time symmetry in optical microcavity systems

    Get PDF
    Canonical quantum mechanics postulates Hermitian Hamiltonians to ensure real eigenvalues. Counterintuitively, a non-Hermitian Hamiltonian, satisfying combined parity-time (PT) symmetry, could display entirely real spectra above some phase-transition threshold. This stems from the existence of a parameter in the Hamiltonian governing characteristics features of eigenvalues and eigenfunctions. Varying this parameter causes real eigenvalues to coalesce and become complex conjugate pairs, signaling the occurrence of a nontrivial phase transition and the breakdown of PT symmetry. Such an appealing discovery has aroused extensive theoretical interest in extending canonical quantum theory by including non-Hermitian but PT-symmetric operators in the last two decades. Despite much fundamental theoretical success in the development of PT-symmetric quantum mechanics, an experimental observation of pseudo-Hermiticity remains elusive as these systems with complex potential seem absent in Nature. But nevertheless, the notion of PT symmetry has survived in many other branches of physics including optics, photonics, AMO physics, acoustics, electronic circuits, and material science over the past ten years, where a judicious balance of gain and loss constitutes ingeniously a PT-symmetric system. Here, although we concentrate upon reviewing recent progress on PT symmetry in optical microcavity systems, we also wish to present some new results that may help to accelerate the research in the area. These compound photonic structures with gain and loss provide a powerful platform for testing various theoretical proposals on PT symmetry, and initiate new possibilities for shaping optical beams and pulses beyond conservative structures. Throughout this article there is an effort to clearly present the physical aspects of PT-symmetry in optical microcavity systems, but mathematical formulations are reduced to the indispensable ones. Readers who prefer strict mathematical treatments should resort to the extensive list of references. Despite the rapid progress on the subject, new ideas and applications of PT symmetry using optical microcavities are still expected in the future

    The role of Kruppel-like factors in embryonic stem cells

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Continual Driving Policy Optimization with Closed-Loop Individualized Curricula

    Full text link
    The safety of autonomous vehicles (AV) has been a long-standing top concern, stemming from the absence of rare and safety-critical scenarios in the long-tail naturalistic driving distribution. To tackle this challenge, a surge of research in scenario-based autonomous driving has emerged, with a focus on generating high-risk driving scenarios and applying them to conduct safety-critical testing of AV models. However, limited work has been explored on the reuse of these extensive scenarios to iteratively improve AV models. Moreover, it remains intractable and challenging to filter through gigantic scenario libraries collected from other AV models with distinct behaviors, attempting to extract transferable information for current AV improvement. Therefore, we develop a continual driving policy optimization framework featuring Closed-Loop Individualized Curricula (CLIC), which we factorize into a set of standardized sub-modules for flexible implementation choices: AV Evaluation, Scenario Selection, and AV Training. CLIC frames AV Evaluation as a collision prediction task, where it estimates the chance of AV failures in these scenarios at each iteration. Subsequently, by re-sampling from historical scenarios based on these failure probabilities, CLIC tailors individualized curricula for downstream training, aligning them with the evaluated capability of AV. Accordingly, CLIC not only maximizes the utilization of the vast pre-collected scenario library for closed-loop driving policy optimization but also facilitates AV improvement by individualizing its training with more challenging cases out of those poorly organized scenarios. Experimental results clearly indicate that CLIC surpasses other curriculum-based training strategies, showing substantial improvement in managing risky scenarios, while still maintaining proficiency in handling simpler cases

    Multi-frame image restoration method for novel rotating synthetic aperture imaging system

    Get PDF
    Abstract The novel rotating synthetic aperture (RSA) optical imaging system is an important development direction for future high-resolution optical remote sensing satellites in geostationary orbit. However, owing to the rotating rectangular pupil, the point spread function of the RSA system has an asymmetric spatial distribution, and the images obtained using the primary mirror from different rotation angles have nonuniform blur degradation. Moreover, platform vibration and pupil rotation have coupling effects on the RSA imaging, resulting in further radiometric and geometric quality degradation. To address these problems, the image degradation characteristics are first analyzed according to the imaging mechanism. Then, combined with the theory of mutual information, an image registration method is suggested by introducing the orientation gradient information. From this, a multi-frame image restoration model is proposed based on the directional gradient prior of the RSA system image. From the perspective of interpretation and application, when the aspect ratio is less than 3, the proposed inversion restoration method can achieve a satisfactory processing performance. This work can provide engineering application reference for the future space application of RSA imaging technology
    corecore