1,414 research outputs found

    Design and analysis of a novel long-distance double tendon-sheath transmission device for breast intervention robots under MRI field

    Get PDF
    Cancer represents a major threat to human health. Magnetic resonance imaging (MRI) provides superior performance to other imaging-based examination methods in the detection of tumors and offers distinct advantages in biopsy and seed implantation. However, because of the MRI environment, the material requirements for actuating devices for the medical robots used in MRI are incredibly demanding. This paper describes a novel double tendon-sheath transmission device for use in MRI applications. LeBus grooves are used in the original transmission wheels, thus enabling the system to realize long-distance and large-stroke transmission with improved accuracy. The friction model of the transmission system and the transmission characteristics model of the novel tendon-sheath structure are then established. To address the problem that tension sensors cannot be installed in large-stroke transmission systems, a three-point force measurement method is used to measure and set an appropriate preload in the novel tendon-sheath transmission system. Additionally, experiments are conducted to verify the accuracy of the theoretical model and multiple groups of tests are performed to explore the transmission characteristics. Finally, the novel tendon-sheath transmission system is compensated to improve its accuracy and the experimental results acquired after compensation show that the system satisfies the design requirements

    Heavier inner-core rainfall of major hurricanes in the North atlantic basin than in other global basins

    Get PDF
    Based on 19 years of precipitation data collected by the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, a comparison of the rainfall produced by tropical cyclones (TCs) in different global basins is presented. A total of 1789 TCs were examined in the period from 1998 to 2016 by taking advantage of more than 47 737 observations of TRMM and GPM 3B42 multisatellite-derived rainfall amounts. The axisymmetric component of the TC rainfall is analyzed in all TC-prone basins. The resulting radial profiles show that major hurricanes in the Atlantic basin exhibit significantly heavier inner-core rainfall rates than those in any other basins. To explain the possible causes of this difference, rainfall distributions for major hurricanes are stratified according to different TC intensity and environmental variables. Based on the examination of these parameters, we found that the stronger rainfall rates in the Atlantic major hurricanes are associated with higher values of convective available potential energy, drier relative humidity in the low to middle troposphere, colder air temperature at 250 hPa, and stronger vertical wind shear than other basins. These results have important implications in the refining of our understanding of the mechanisms of TC rainfall

    Contrasting behaviors between the rapidly intensifying and slowly intensifying tropical cyclones in the North Atlantic and Eastern Pacific basins

    Get PDF
    Based on 35-yr (1982-2016) best track and Statistical Hurricane Intensity Prediction Scheme data, this study examined climatology of rapidly intensifying (RI) and slowly intensifying (SI) events as well as their time evolutions of storm-related and environmental parameters for tropical cyclones (TCs) in both North Atlantic (AL) and eastern North Pacific (EP) basins. Major hurricanes were intensified mainly through RI while tropical depression and tropical storms were intensified through SI. The percentage of TCs that underwent RI peaks in the late hurricane season whereas the percentage of TCs that underwent SI peaks early. For the first time in the literature, this study found that RI events have significantly different storm-related and environmental characteristics than SI events for before-, during-, and after-event stages. In both AL and EP basins, RI events always intensify significantly faster during the previous 12 h, are located farther south, and have warmer sea surface and 200-hPa temperatures, greater ocean heat content, larger 200-hPa divergence, weaker vertical wind shear, and weaker 200-hPa westerly flow than SI events for all event-relative stages. In the AL basin, RI events have larger low-level and midlevel relative humidity and larger 850-hPa relative vorticity than SI events for all event-relative stages in the AL and most event-relative stages in the EP. RI events are associated with more convectively unstable atmosphere and are farther away from their maximum potential intensities than SI events for most event-relative stages in the AL and for all event-relative stages in the EP

    Global increase in tropical cyclone rain rate

    Get PDF
    Theoretical models of the potential intensity of tropical cyclones (TCs) suggest that TC rainfall rates should increase in a warmer environment but limited observational evidence has been studied to test these hypotheses on a global scale. The present study explores the general trends of TC rainfall rates based on a 19-year (1998–2016) time series of continuous observational data collected by the Tropical Rainfall Measuring Mission and the Global Precipitation Measurement mission. Overall, observations exhibit an increasing trend in the average TC rainfall rate of about 1.3% per year, a fact that is contributed mainly by the combined effect of the reduction in the inner-core rainfall rate with the increase in rainfall rate on the rainband region. We found that the increasing trend is more pronounced in the Northwestern Pacific and North Atlantic than in other global basins, and it is relatively uniform for all TC intensities. Further analysis shows that these trends are associated with increases in sea surface temperature and total precipitable water in the TC environment
    • …
    corecore