5 research outputs found

    Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis

    No full text
    Chloride intracellular channel 1 (CLIC1) is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM) database using structure-based virtual screening and molecular dynamics (MD) simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition

    KIF4A: A potential biomarker for prediction and prognostic of prostate cancer

    No full text
    Purpose: To investigate the clinical relevance and biological function of the kinesin super-family protein 4A (KIF4A) expression in prostate cancer (PCa). Methods: We examined 1) the relationship between the expression of KIF4A and clinico-pathological characteristics of PCa patients using a tissue microarray and the Cancer Genome Atlas database, 2) the prognostic value of KIF4A expression in patients using Kaplan-Meier plots and 3) the functions of KIF4A in LNCaP and DU145 cells, such as cell proliferation, cell cycle and cell apoptosis. Results: Compared with normal prostate, the mRNA and protein expressions of KIF4A were up-regulated in PCa. The up-regulation expression rates of KIF4A in PCa were significantly related to the Gleason score (

    Artesunate Sensitizes Human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy

    No full text
    Sorafenib is the most widely used first-line drug for the treatment of the advanced hepatocellular carcinoma (HCC). Unfortunately, sorafenib resistance often limits its therapeutic efficacy. To evaluate the efficacy of artesunate against sorafenib-resistant HCC and to investigate its underlying pharmacological mechanisms, a “sorafenib resistance related gene-ART candidate target” interaction network was constructed, and a signaling axis consisting with artesunate candidate target AFAP1L2 and sorafenib target SRC, and the downstream FUNDC1-dependent mitophagy was identified as a major contributor to the sorafenib resistance and a potential way of artesunate to mitigate resistance. Notably, our clinical data demonstrated that AFAP1L2 expression in HCC tissues was markedly higher than that in adjacent non-cancerous liver tissues (P P < 0.05). Experimentally, AFAP1L2 was overexpressed in sorafenib resistant cells, leading to the activation of downstream SRC-FUNDC1 signaling axis, further blocking the FUNDC1 recruitment of LC3B to mitochondria and inhibiting the activation of mitophagy, based on both in vitro and in vivo systems. Moreover, artesunate significantly enhanced the inhibitory effects of sorafenib on resistant cells and tumors by inducing excessive mitophagy. Mechanically, artesunate reduced the expression of AFAP1L2 protein, suppressed the phosphorylation levels of SRC and FUNDC1 proteins, promoted the FUNDC1 recruitment of massive LC3B to mitochondria, and further overactivated the mitophagy and subsequent cell apoptosis of sorafenib resistant cells. In conclusion, artesunate may be a promising strategy to mitigate sorafenib resistance in HCC via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy.</p
    corecore