61 research outputs found
Adaptive Backstepping Control of Uncertain Nonlinear Systems with Input and State Quantization
Author's accepted manuscript.
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Although it is common in network control systems that the sensor and control signals are transmitted via a common communication network, no result is available in investigating the stabilization problem for uncertain nonlinear systems with both input and state quantization. The issue is solved in this article, by presenting an adaptive backstepping based control algorithm for the systems with sector bounded input/state quantizers. In addition to overcome the difficulty to proceed recursive design of virtual controls with quantized states, the relation between the input signal and error state need be well established to handle the effects due to input quantization. It is shown that all closed-loop signals are ensured uniformly bounded and all states will converge to a compact set. Experimental results are provided to validate the effectiveness of the proposed control scheme.acceptedVersio
Adaptive backstepping based consensus tracking of uncertain nonlinear systems with event-triggered communication
This paper investigates the consensus tracking problem for a class of uncertain high-order nonlinear systems with parametric uncertainties and event-triggered communication. Under a directed communication condition, a totally distributed adaptive backstepping based control scheme is presented. Specifically, a decentralized triggering condition is adopted in this paper such that continuous monitoring of neighboring states, as required in some existing results, can be avoided. Besides, to handle the non-differentiability problem of virtual controllers, which arises from the utilization of neighboring states collected only at the triggering instants, the virtual controllers in each recursive step are firstly designed with continuous communication. Then, the partial derivatives of these designed virtual controllers are adopted to construct distributed adaptive consensus controllers for the event based communication case. It is shown that with the presented distributed adaptive consensus control scheme and even-triggered communication mechanism, all the closed-loop signals are uniformly bounded and the output consensus tracking errors will converge to a compact set. Besides, the tracking performance in the mean square sense can be improved by appropriately adjusting design parameters.acceptedVersio
Topology-constrained Synthesis of Vector Patterns
International audienceDecorative patterns are observed in many forms of art, typically enriching the visual aspect of otherwise simple shapes. Such patterns are especially difficult to create, as they often exhibit intricate structural details and at the same time have to precisely match the size and shape of the underlying geometry. In the field of Computer Graphics, several approaches have been proposed to automatically synthesize a decorative pattern along a curve, from an example. This empowers non expert users with a simple brush metaphor, allowing them to easily paint complex structured decorations.We extend this idea to the space of design and fabrication. The major challenge is to properly account for the topology of the produced patterns. In particular, our technique ensures that synthesized patterns will be made of exactly one connected component, so that once printed they form a single object. To achieve this goal we propose a two steps synthesis process, first synthesizing the topology of the pattern and later synthesizing its exact geometry. We introduce topology descriptors that efficiently capture the topology of the pattern synthesized so far.We propose several applications of our method, from designing objects using synthesized patterns along curves and within rectangles, to the decoration of surfaces with a dedicated smooth frame interpolation. Using our technique, designers paint structured patterns that can be fabricated into solid, tangible objects, creating unusual and surprising designs of lamps, chairs and laces from examples
Mixed-use residential development and its effects on the travel behaviour of residents: findings from casestudies in Beijing
published_or_final_versionabstractArchitectureMasterMaster of Philosoph
Sensor cascading fault estimation and control for hypersonic flight vehicles based on a multidimensional generalized observer
This study presents a sensor cascading fault estimation and fault-tolerant control (FTC) for a nonlinear Takagi-Sugeno fuzzy model of hypersonic flight vehicles. Sensor cascading faults indicate the occurrence of source fault will cause another fault and the interval between them is really short, which makes it difficult to handle them in succession. A novel multidimensional generalized observer is used to estimate faults by integrating constant offset and time-varying gain faults. Then, a fault-tolerant controller is used to solve system nonlinearity and sensor fault problems. The observer and controller satisfy the performance index and are robust to external disturbances. A sufficient condition for the existence of observer and controller is derived on the basis of Lyapunov theory. Simulation results indicate the effectiveness of the proposed fault estimation and FTC scheme
Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance
In this paper, we deal with the problem of global tracking and stabilization control of internally damped mobile robots with unknown parameters, and subject to input torque saturation and external disturbances. To overcome the difficulties due to these factors, a new adaptive scheme is proposed to ensure the bounds of the control torques as functions of only design parameters and reference trajectories and thus computable in advance. Then suitable design parameters are determined so that such bounds are within the given saturation limits. To compensate for the disturbances, we estimate their unknown bounds and employ the estimates in controller design. System stability, perfect tracking and stabilization to the origin are established. Simulation studies conducted also verify the effectiveness of the proposed scheme
High efficiency planar Si/organic heterojunction hybrid solar cells
We present an efficient hybrid solar cell based on poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate and planar Si with (100) and (111) orientations. The effect of Si surface native oxide on cell performance is studied. Compared to cell with hydrogen-terminated Si surface, the cell with oxygen-terminated Si surface reveals a 530-fold increase in power conversion efficiency (PCE) from 0.02% to 10.6%. The formation of SiOx-Si bonds poses a net positive surface dipole which leads to a favorable band alignment for charge separation. However, thicker oxide degrades cell performance due to higher series resistance. This study demonstrates the highest PCE reported to-date in this field.Published versio
Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% efficiency
High-efficiency hybrid solar cells are fabricated using a simple approach of spin coating a transparent hole transporting organic small molecule, 2,2′,7,7′-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (Spiro-OMeTAD) on silicon nanowires (SiNWs) arrays prepared by electroless chemical etching. The characteristics of the hybrid cells are investigated as a function of SiNWs length from 0.15 to 5 μm. A maximum average power conversion efficiency of 9.92% has been achieved from 0.35 μm length SiNWs cells, despite a 12% shadowing loss and the absence of antireflective coating and back surface field enhancement. It is found that enhanced aggregations in longer SiNWs limit the cell performance due to increased series resistance and higher carrier recombination in the shorter wavelength region. The effects of the Si substrate doping concentrations on the performance of the cells are also investigated. Cells with higher substrate doping concentration exhibit a significant drop in the incident photons-to-current conversion efficiency (IPCE) in the near infrared region. Nevertheless, a promising short circuit current density of 19 mA/cm2 and IPCE peak of 57% have been achieved for a 0.9 μm length SiNWs cell fabricated on a highly doped substrate with a minority-carrier diffusion length of only 15 μm. The results suggest that such hybrid cells can potentially be realized using Si thin films instead of bulk substrates. This is promising towards realizing low-cost and high-efficiency SiNWs/organic hybrid solar cells
Enhanced conversion efficiency for Si nanowire–organic hybrid solar cells through the incorporation of organic small molecule
We demonstrate high-efficiency hybrid solar cells based on heterojunctions formed between n-type silicon nanowires (SiNWs) and p-type organic semiconductors fabricated using a simple solution-based approach. Two types of devices have been fabricated with different organic materials used, namely poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and a small molecule, 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD). The cells are characterized and compared in terms of their physical characteristics and photovoltaic performance. Using SiNWs of the same length of 0.35 µm, it is found that the SiNWs/Spiro cells exhibit a power conversion efficiency of 10.3%, which is higher than the 7.7% of SiNWs/PEDOT cells. The results are interpreted in terms of the ability of the two organic semiconductors to fill the gaps between the SiNWs and the optical reflectance of the samples. The degradation of the SiNWs/Spiro cells is also studied and presented
Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure
We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness
- …