33 research outputs found

    INK4 Tumor Suppressor Proteins Mediate Resistance to CDK4/6 Kinase Inhibitors

    Get PDF
    Proteïnes supressores de tumors; Inhibidors de la quinasaProteínas supresoras de tumores; Inhibidores de la quinasaTumor suppressor proteins; Kinase inhibitorsCyclin-dependent kinases 4 and 6 (CDK4/6) represent a major therapeutic vulnerability for breast cancer. The kinases are clinically targeted via ATP competitive inhibitors (CDK4/6i); however, drug resistance commonly emerges over time. To understand CDK4/6i resistance, we surveyed over 1,300 breast cancers and identified several genetic alterations (e.g., FAT1, PTEN, or ARID1A loss) converging on upregulation of CDK6. Mechanistically, we demonstrate CDK6 causes resistance by inducing and binding CDK inhibitor INK4 proteins (e.g., p18INK4C). In vitro binding and kinase assays together with physical modeling reveal that the p18INK4C–cyclin D–CDK6 complex occludes CDK4/6i binding while only weakly suppressing ATP binding. Suppression of INK4 expression or its binding to CDK6 restores CDK4/6i sensitivity. To overcome this constraint, we developed bifunctional degraders conjugating palbociclib with E3 ligands. Two resulting lead compounds potently degraded CDK4/6, leading to substantial antitumor effects in vivo, demonstrating the promising therapeutic potential for retargeting CDK4/6 despite CDK4/6i resistance. Significance: CDK4/6 kinase activation represents a common mechanism by which oncogenic signaling induces proliferation and is potentially targetable by ATP competitive inhibitors. We identify a CDK6–INK4 complex that is resilient to current-generation inhibitors and develop a new strategy for more effective inhibition of CDK4/6 kinases.The Chandarlapaty lab has received generous funding support for this research from the Cancer Couch Foundation, the Shen Family Fund, the Smith Fund for Cancer Research, the Breast Cancer Research Foundation, an NIH Cancer Center Support Grant (P30 CA008748), and NIH R01234361. Q. Li has received support from Translational Research Oncology Training Fellowship (MSKCC) made possible by the generous contribution of First Eagle Investment Management. V. Serra reports grants from the Susan G. Komen Foundation (CCR15330331) and Instituto de Salud Carlos III (CPII19/00033) during the conduct of the study and grants from Novartis, Genentech, and AstraZeneca outside the submitted work. The Chodera laboratory receives or has received funding from multiple sources, including the NIH and an NIH Cancer Center Support Grant (P30 CA008748), the National Science Foundation, the Parker Institute for Cancer Immunotherapy, Relay Therapeutics, Entasis Therapeutics, Silicon Therapeutics, EMD Serono (Merck KGaA), AstraZeneca, Vir Biotechnology, Bayer, XtalPi, Foresite Laboratories, the Molecular Sciences Software Institute, the Starr Cancer Consortium, the Open Force Field Consortium, Cycle for Survival, a Louis V. Gerstner Young Investigator Award, and the Sloan Kettering Institute. J. Guo acknowledges support from NIH grant R01 GM121505. J.D. Chodera acknowledges support from NIH grant P30 CA008748, NIH grant R01 GM121505, and NIH grant R01 GM132386. A complete funding history for the Chodera lab can be found at http://choderalab.org/funding, including complete funding information and grant numbers. The authors thank Dr. Marie Will and Madeline Dorso for helpful comments on the manuscript and Dr. Zhan Yao for helpful advice on the kinase assays

    Harmine Induces Adipocyte Thermogenesis through RAC1-MEK-ERK-CHD4 Axis

    Get PDF
    © The Author(s) 2016.Harmine is a natural compound possessing insulin-sensitizing effect in db/db diabetic mice. However its effect on adipose tissue browning is unknown. Here we reveal that harmine antagonizes high fat diet-induced adiposity. Harmine-treated mice gained less weight on a high fat diet and displayed increased energy expenditure and adipose tissue thermogenesis. In vitro, harmine potently induced the expression of thermogenic genes in both brown and white adipocytes, which was largely abolished by inhibition of RAC1/MEK/ERK pathway. Post-transcriptional modification analysis revealed that chromodomain helicase DNA binding protein 4 (CHD4) is a potential downstream target of harmine-mediated ERK activation. CHD4 directly binds the proximal promoter region of Ucp1, which is displaced upon treatment of harmine, thereby serving as a negative modulator of Ucp1. Thus, here we reveal a new application of harmine in combating obesity via this off-target effect in adipocytes.published_or_final_versio

    Key enzymes catalyzing glycerol to 1,3-propanediol

    Full text link

    Shell-model calculation with density-dependent Gogny interaction

    No full text

    Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration.

    No full text
    NADH oxidases (NOXs) play an important role in maintaining balance of NAD+/NADH by catalyzing cofactors regeneration. The expression of nox gene from Lactobacillus brevis in Escherichia coli BL21 (BL21 (DE3)) was studied. Two strategies, the high AT-content in the region adjacent to the initiation codon and codon usage of the whole gene sequence consistent with the host, obtained the NOX activity of 59.9 U/mg and 73.3 U/mg (crude enzyme), with enhanced expression level of 2.0 and 2.5-folds, respectively. Purified NOX activity was 213.8 U/mg. Gene fusion of glycerol dehydrogenase (GDH) and NOX formed bifuctional multi-enzymes for bioconversion of glycerol coupled with coenzyme regeneration. Kinetic parameters of the GDH-NOX for each substrate, glycerol and NADH, were calculated as Vmax(Glycerol) 20 μM/min, Km(Glycerol) 19.4 mM, Vmax (NADH) 12.5 μM/min and Km (NADH) 51.3 μM, respectively, which indicated the potential application of GDH-NOX for quick glycerol analysis and dioxyacetone biosynthesis

    The pie chart of the distribution of PDOR’ activities and identified mutants.

    No full text
    <p>The pie chart of the distribution of PDOR’ activities and identified mutants.</p

    Specific activities of the opt-<i>nox</i> in the process of purification.

    No full text
    <p>Specific activities of the opt-<i>nox</i> in the process of purification.</p

    Determination of kinetic parameters of GDH-NOX.

    No full text
    <p>(a) Glycerol; (b) NADH. Experiment condition: glycerol concentration (0.01, 0.125, 0.014, 0.025, 0.05M), NADH concentration (20, 40, 60, 100, 200 μM). pH 7.0, 37°C.</p

    Sequences of the third to sixth codons and the Nox activities.

    No full text
    <p>Note: Mutation sites was underlined.</p><p>Sequences of the third to sixth codons and the Nox activities.</p
    corecore