15 research outputs found

    The VCAM1-ApoE pathway directs microglial chemotaxis and alleviates Alzheimer\u27s disease pathology

    Get PDF
    In Alzheimer\u27s disease (AD), sensome receptor dysfunction impairs microglial danger-associated molecular pattern (DAMP) clearance and exacerbates disease pathology. Although extrinsic signals, including interleukin-33 (IL-33), can restore microglial DAMP clearance, it remains largely unclear how the sensome receptor is regulated and interacts with DAMP during phagocytic clearance. Here, we show that IL-33 induces VCAM1 in microglia, which promotes microglial chemotaxis toward amyloid-beta (Aβ) plaque-associated ApoE, and leads to Aβ clearance. We show that IL-33 stimulates a chemotactic state in microglia, characterized by Aβ-directed migration. Functional screening identified that VCAM1 directs microglial Aβ chemotaxis by sensing Aβ plaque-associated ApoE. Moreover, we found that disrupting VCAM1-ApoE interaction abolishes microglial Aβ chemotaxis, resulting in decreased microglial clearance of Aβ. In patients with AD, higher cerebrospinal fluid levels of soluble VCAM1 were correlated with impaired microglial Aβ chemotaxis. Together, our findings demonstrate that promoting VCAM1-ApoE-dependent microglial functions ameliorates AD pathology

    An \u3cem\u3eIL1RL1\u3c/em\u3e genetic variant lowers soluble ST2 levels and the risk effects of \u3cem\u3eAPOE\u3c/em\u3e-ε4 in female patients with Alzheimer’s disease

    Get PDF
    Changes in the levels of circulating proteins are associated with Alzheimer’s disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33–ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR–Cas9 genome editing identified rs1921622, a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622, demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-ε4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622/sST2 regulates amyloid-beta (Aβ) pathology through the modulation of microglial activation and Aβ clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD

    Deep learning-based polygenic risk analysis for Alzheimer's disease prediction

    Get PDF
    BACKGROUND: The polygenic nature of Alzheimer's disease (AD) suggests that multiple variants jointly contribute to disease susceptibility. As an individual's genetic variants are constant throughout life, evaluating the combined effects of multiple disease-associated genetic risks enables reliable AD risk prediction. Because of the complexity of genomic data, current statistical analyses cannot comprehensively capture the polygenic risk of AD, resulting in unsatisfactory disease risk prediction. However, deep learning methods, which capture nonlinearity within high-dimensional genomic data, may enable more accurate disease risk prediction and improve our understanding of AD etiology. Accordingly, we developed deep learning neural network models for modeling AD polygenic risk. METHODS: We constructed neural network models to model AD polygenic risk and compared them with the widely used weighted polygenic risk score and lasso models. We conducted robust linear regression analysis to investigate the relationship between the AD polygenic risk derived from deep learning methods and AD endophenotypes (i.e., plasma biomarkers and individual cognitive performance). We stratified individuals by applying unsupervised clustering to the outputs from the hidden layers of the neural network model. RESULTS: The deep learning models outperform other statistical models for modeling AD risk. Moreover, the polygenic risk derived from the deep learning models enables the identification of disease-associated biological pathways and the stratification of individuals according to distinct pathological mechanisms. CONCLUSION: Our results suggest that deep learning methods are effective for modeling the genetic risks of AD and other diseases, classifying disease risks, and uncovering disease mechanisms

    An IL1RL1 genetic variant lowers soluble ST2 levels and the risk effects of APOE-ε4 in female patients with Alzheimer’s disease

    Get PDF
    Changes in the levels of circulating proteins are associated with Alzheimer’s disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33–ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR–Cas9 genome editing identified rs1921622, a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622, demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-ε4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622/sST2 regulates amyloid-beta (Aβ) pathology through the modulation of microglial activation and Aβ clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD

    Improved Bagging Algorithm for Pattern Recognition in UHF Signals of Partial Discharges

    No full text
    This paper presents an Improved Bagging Algorithm (IBA) to recognize ultra-high-frequency (UHF) signals of partial discharges (PDs). This approach establishes the sample information entropy for each sample and the re-sampling process of the traditional Bagging algorithm is optimized. Four typical discharge models were designed in the laboratory to simulate the internal insulation faults of power transformers. The optimized third order Peano fractal antenna was applied to capture the PD UHF signals. Multi-scale fractal dimensions as well as energy parameters extracted from the decomposed signals by wavelet packet transform were used as the characteristic parameters for pattern recognition. In order to verify the effectiveness of the proposed algorithm, the back propagation neural network (BPNN) and the support vector machine (SVM) based on the IBA were adopted in this paper to carry out the pattern recognition for PD UHF signals. Experimental results show that the proposed approach of IBA can effectively enhance the generalization capability and also improve the accuracy of the recognition for PD UHF signals

    Review of Monitoring and Early Warning Technologies for Cover-Collapse Sinkholes

    Get PDF
    Sinkhole collapse has become a major geohazard in many karst areas. The development of monitoring and early warning technologies is essential to investigate mechanisms of sinkhole formation. This paper reviews latest research on monitoring and early warning technologies surrounding cover-collapse sinkholes. Monitoring the hydrodynamic conditions in areas susceptible of sinkhole collapse has proven to be useful to help understand the relationship of rainfall, surface water, and groundwater in karst areas. Monitoring hydrodynamic conditions of karst groundwater includes rainfall monitoring, groundwater level monitoring, air pressure monitoring, and groundwater quality monitoring. Observations from the monitoring system and known sinkhole collapses could be used to simulate and predict hydrogeologic, geologic, and atmospheric conditions favorable to sinkhole formation. Monitoring technologies of deformation for the overburden soil include Ground Penetrating Radar (GPR), Time Domain Reflectometry (TDR), and Brillouin Optical Time Domain Reflectometer (BOTDR). GPR is more suitable to investigate relatively flat terrain with dry soil cover. TDR and BOTDR were more suitable for linearly distributed monitoring sites because of the cohesion between soil mass and optical fiber

    The complete mitochondrial genome of Penicillium sp. D1806 from Oryza sativa seeds and its phylogenetic implication

    No full text
    The complete mitochondrial genome of Penicillium sp. D1806 isolated from Oryza sativa seeds is reported on the basis of the Illumina sequencing data. Its circular mitogenome is 27,461 bp in length, containing 15 protein-coding genes (PCGs), 1 ORFs, 2 ribosomal RNA (rns and rnl) genes, and 24 transfer RNA (tRNA) genes. The overall base composition is as follows: 36.2% A, 37.1% T(U), 11.8% C, 14.9% G, with a low GC content of 26.7%. Phylogenetic analysis shows that Penicillium sp. D1806 is clustered in the genus Penicillium of Aspergillaceae and forms a separate clade with strong statistical support. This study contributes to our understanding of systematics and evolutionary biology of the filamentous fungi in Aspergillaceae (Eurotiomycetes, Ascomycota)
    corecore