112 research outputs found
Weikangning Therapy in Functional Dyspepsia and the Protective Role of Nrf2
Functional dyspepsia (FD) is a non-organic gastro-intestinal disorder that has a marked negative impact on quality of life. Compared with conventional pharmacological therapies, the traditional Chinese medicine weikangning (WKN) is a safe and effective treatment for FD. The present study aimed to determine the molecular mechanisms underlying the efficacy of WKN. The effect of different concentrations of WKN on the proliferation of the human gastric mucosal epithelial cell line GES-1 was assessed. The optimal WKN concentration to promote cell proliferation was determined, and this concentration was used to examine the effect of WKN compared with a domperidone-treated positive control group on the antioxidant capacity of GES-1 cells. The effect of WKN treatment on the growth and antioxidant activity of GES-1 cells was also assessed following nuclear factor erythroid 2 like 2 (Nrf2) knockdown. The optimal WKN dose for promoting cell growth was determined to be 0.025 mg/ml; at this concentra-tion the expression of the antioxidant proteins glutathione S-transferase P and superoxide dismutase 2 (SOD2) were significantly elevated (
1
1H NMR-based metabolic profiling combined with multivariate data analysis was used to explore the metabolic phenotype of functional dyspepsia (FD) in stressed rats and evaluate the intervention effects of the Chinese medicine Weikangning (WKN). After a 7-day period of model establishment, a 14-day drug administration schedule was conducted in a WKN-treated group of rats, with the model and normal control groups serving as negative controls. Based on 1H NMR spectra of urine and serum from rats, PCA, PLS-DA, and OPLS-DA were performed to identify changing metabolic profiles. According to the key metabolites determined by OPLS-DA, alterations in energy metabolism, stress-related metabolism, and gut microbiota were found in FD model rats after stress stimulation, and these alterations were restored to normal after WKN administration. This study may provide new insights into the relationship between FD and psychological stress and assist in research into the metabolic mechanisms involved in Chinese medicine
Acoustoelectric brain imaging with different conductivities and acoustic distributions
Objective: Acoustoelectric brain imaging (AEBI) is a promising imaging method for mapping brain biological current densities with high spatiotemporal resolution. Currently, it is still challenging to achieve human AEBI with an unclear acoustoelectric (AE) signal response of medium characteristics, particularly in conductivity and acoustic distribution. This study introduces different conductivities and acoustic distributions into the AEBI experiment, and clarifies the response interaction between medium characteristics and AEBI performance to address these key challenges.Approach: AEBI with different conductivities is explored by the imaging experiment, potential measurement, and simulation on a pigâs fat, muscle, and brain tissue. AEBI with different acoustic distributions is evaluated on the imaging experiment and acoustic field measurement through a deep and surface transmitting model built on a human skullcap and pig brain tissue.Main results: The results show that conductivity is not only inversely proportional to the AE signal amplitude but also leads to a higher AEBI spatial resolution as it increases. In addition, the current source and sulcus can be located simultaneously with a strong AE signal intensity. The transcranial focal zone enlargement, pressure attenuation in the deep-transmitting model, and ultrasound echo enhancement in the surface-transmitting model cause a reduced spatial resolution, FFT-SNR, and timing correlation of AEBI. Under the comprehensive effect of conductivity and acoustics, AEBI with skull finally shows reduced imaging performance for both models compared with no-skull AEBI. On the contrary, the AE signal amplitude decreases in the deep-transmitting model and increases in the surface-transmitting model.Significance: This study reveals the response interaction between medium characteristics and AEBI performance, and makes an essential step toward developing AEBI as a practical neuroimaging technique
Effects and mechanisms of auricular electroacupuncture on gastric hypersensitivity in a rodent model of functional dyspepsia
Background Functional dyspepsia (FD) is a common functional gastrointestinal disease, and abdominal pain is one of the main symptoms. The aim of this study was to explore the effects and mechanisms of auricular electro-acupuncture (AEA) on gastric hypersensitivity in a rodent model of FD. Methods Ten-day-old pups were gavaged with 0.2 ml of 0.1% iodoacetamide daily for 6 days. AEA at the âstomachâ point with different parameters or sham-EA was performed on 8-week-old animals. Gastric sensitivity to gastric distention was measured under different conditions. Autonomic functions were assessed from the spectral analysis of heart rate variability (HRV) derived from the electrocardiogram. Naloxone was injected intraperitoneally before AEA to explore the opioid mechanism. Gastric emptying was measured at the end of the study. Results 1) Gastric sensitivity to gastric distention was higher in the FD rats. AEA with parameters of 0.1s on, 0.4s off, 100Hz, 0.3ms and 0.4â0.5mA, but not other parameters or sham-EA, decreased gastric hypersensitivity in the FD rats. Naloxone did not block the effect of AEA. 2) Lower vagal activity and higher sympathovagal ratio were noted in the FD rats, compared with the controls. AEA increased vagal activity and improved sympathovagal imbalance. Conclusions AEA ameliorates gastric hypersensitivity in FD rats and this effect may be attributed to the improvement of sympathovagal balance.Yeshttp://www.plosone.org/static/editorial#pee
Improved colloidal and oxidative stability of krill oil using natural biopolymers via spray drying microencapsulation
Abstract Krill oil possesses strong antioxidant activity but has limited applications in the food industry due to its poor aqueous solubility, strong offâflavours and susceptibility to oxidative degradation. This study was aimed to improve the colloidal and oxidative stability of krill oil via microencapsulation using spray drying. Whey protein isolate (WPI), maltodextrin (MD), carboxymethyl starch (CMS) and nâoctenylsuccinate starch (OSAS) were used as the microcapsule wall materials. The results showed that WPI+MD microcapsules had the optimum characterised properties compared to WPI+CMS and WPI+OSAS microcapsules. WPI+MD microcapsules possessed the highest encapsulation efficiency of 76.59%. The optimal air inlet temperature was 165°C, providing a high krill oil encapsulation efficiency and reducing concaveness on the microcapsule surfaces. Krill oil was distributed homogeneously inside the capsules and presented a good colloidal stability during an extended storage time. The antioxidant capacity against heat was simultaneously increased owing to the improved oxidative stability by microencapsulation. Consequently, this study provides useful guidelines for improving the stability and application of krill oil in the food industry
Dynamic characteristics of Semi-active Hydraulic Engine Mount Based on Fluid-Structure Interaction FEA
A kind of semi-active hydraulic engine mount is studied in this paper. After careful analysis of its structure and working principle, the FEA simulation of it was divided into two cases. One is the solenoid valve is open, so the air chamber connects to the atmosphere, and Fluid-Structure Interaction was used. Another is the solenoid valve is closed, and the air chamber has pressure, so Fluid-Structure-Gas Interaction was used. The test of this semi-active hydraulic engine mount was carried out to compare with the simulation results, and verify the accuracy of the model. Then the dynamic characteristics-dynamic stiffness and damping angle were analysed by simulation and test. This paper provides theoretical support for the development and optimization of the semi-active hydraulic engine mount
- âŠ