12 research outputs found

    Quantitative study on the microstructural evolution and dimensional stability mechanism of 2024 Al alloy during long-term thermal cycling

    No full text
    During the start-stop process of high-precision instruments in service, the critical materials of instruments undergo thermal cycling, resulting in changes in microstructure and dimension. In this paper, the evolution and coupling effects of dislocations and precipitates within 2024 Al alloy during 500 cycles were investigated, and their influence on the dimensional change was quantitatively characterized and decoupling analyzed. Transmission Electron Microscopy (TEM)/aberration-corrected scanning TEM (CS-TEM), X-ray diffraction (XRD), and Three-Dimensional Atom Probe Tomography (3D-APT) were used for microstructural evolution analysis and quantitative statistics. The dislocation density increased from 3.32 × 1014 m−2 to 5.75 × 1014 m−2 after 500 cycles, which accelerated elemental diffusion and provided nucleation sites of precipitates, contributing to an increase in the number density of the S'/S phase from 1.04 × 1024 m−3 to 1.41 × 1024 m−3. Based on the quantitative statistics of precipitate types and corresponding volume fractions, the dimensional change induced by precipitate evolution was −1.25 × 10−4. The dimensional change caused by the free volume introduced by dislocation density was 3.32 × 10−6. Comparing these values with the experimental value of −1.94 × 10−4, it is clear that the precipitate evolution is the main factor that triggers the dimensional change

    Modeling the Relationship of ≄2 MeV Electron Fluxes at Different Longitudes in Geostationary Orbit by the Machine Learning Method

    No full text
    The energetic electrons in the Earth’s radiation belt, known as “killer electrons”, are one of the crucial factors for the safety of geostationary satellites. Geostationary satellites at different longitudes encounter different energetic electron environments. However, organizations of space weather prediction usually only display the real-time ≄2 MeV electron fluxes and the predictions of ≄2 MeV electron fluxes or daily fluences within the next 1–3 days by models at one location in GEO orbit. In this study, the relationship of ≄2 MeV electron fluxes at different longitudes is investigated based on observations from GOES satellites, and the relevant models are developed. Based on the observations from GOES-10 and GOES-12 after calibration verification, the ratios of the ≄2 MeV electron daily fluences at 135° W to those at 75° W are mainly in the range from 1.0 to 4.0, with an average of 1.92. The models with various combinations of two or three input parameters are developed by the fully connected neural network for the relationship between ≄2 MeV electron fluxes at 135° W and 75° W in GEO orbit. According to the prediction efficiency (PE), the model only using log10 (fluxes) and MLT from GOES-10 (135° W), whose PE can reach 0.920, has the best performance to predict ≄2 MeV electron fluxes at the locations of GOES-12 (75° W). Its PE is larger than that (0.882) of the linear model using log10 (fluxes four hours ahead) from GOES-10 (135° W). We also develop models for the relationship between ≄2 MeV electron fluxes at 75° W and at variable longitudes between 95.8° W and 114.9° W in GEO orbit by the fully connected neural network. The PE values of these models are larger than 0.90. These models realize the predictions of ≄2 MeV electron fluxes at arbitrary longitude between 95.8° W and 114.9° W in GEO orbit

    An operational solar wind prediction system transitioning fundamental science to operations

    No full text
    We present in this paper an operational solar wind prediction system. The system is an outcome of the collaborative efforts between scientists in research communities and forecasters at Space Environment Prediction Center (SEPC) in China. This system is mainly composed of three modules: (1) a photospheric magnetic field extrapolation module, along with the Wang-Sheeley-Arge (WSA) empirical method, to obtain the background solar wind speed and the magnetic field strength on the source surface; (2) a modified Hakamada-Akasofu-Fry (HAF) kinematic module for simulating the propagation of solar wind structures in the interplanetary space; and (3) a coronal mass ejection (CME) detection module, which derives CME parameters using the ice-cream cone model based on coronagraph images. By bridging the gap between fundamental science and operational requirements, our system is finally capable of predicting solar wind conditions near Earth, especially the arrival times of the co-rotating interaction regions (CIRs) and CMEs. Our test against historical solar wind data from 2007 to 2016 shows that the hit rate (HR) of the high-speed enhancements (HSEs) is 0.60 and the false alarm rate (FAR) is 0.30. The mean error (ME) and the mean absolute error (MAE) of the maximum speed for the same period are −73.9 km s−1 and 101.2 km s−1, respectively. Meanwhile, the ME and MAE of the arrival time of the maximum speed are 0.15 days and 1.27 days, respectively. There are 25 CMEs simulated and the MAE of the arrival time is 18.0 h

    An operational solar wind prediction system transitioning fundamental science to operations

    No full text
    We present in this paper an operational solar wind prediction system. The system is an outcome of the collaborative efforts between scientists in research communities and forecasters at Space Environment Prediction Center (SEPC) in China. This system is mainly composed of three modules: (1) a photospheric magnetic field extrapolation module, along with the Wang-Sheeley-Arge (WSA) empirical method, to obtain the background solar wind speed and the magnetic field strength on the source surface; (2) a modified Hakamada-Akasofu-Fry (HAF) kinematic module for simulating the propagation of solar wind structures in the interplanetary space; and (3) a coronal mass ejection (CME) detection module, which derives CME parameters using the ice-cream cone model based on coronagraph images. By bridging the gap between fundamental science and operational requirements, our system is finally capable of predicting solar wind conditions near Earth, especially the arrival times of the co-rotating interaction regions (CIRs) and CMEs. Our test against historical solar wind data from 2007 to 2016 shows that the hit rate (HR) of the high-speed enhancements (HSEs) is 0.60 and the false alarm rate (FAR) is 0.30. The mean error (ME) and the mean absolute error (MAE) of the maximum speed for the same period are −73.9 km s−1 and 101.2 km s−1, respectively. Meanwhile, the ME and MAE of the arrival time of the maximum speed are 0.15 days and 1.27 days, respectively. There are 25 CMEs simulated and the MAE of the arrival time is 18.0 h

    An operational solar wind prediction system transitioning fundamental science to operations

    No full text
    We present in this paper an operational solar wind prediction system. The system is an outcome of the collaborative efforts between scientists in research communities and forecasters at Space Environment Prediction Center (SEPC) in China. This system is mainly composed of three modules: (1) a photospheric magnetic field extrapolation module, along with the Wang-Sheeley-Arge (WSA) empirical method, to obtain the background solar wind speed and the magnetic field strength on the source surface; (2) a modified Hakamada-Akasofu-Fry (HAF) kinematic module for simulating the propagation of solar wind structures in the interplanetary space; and (3) a coronal mass ejection (CME) detection module, which derives CME parameters using the ice-cream cone model based on coronagraph images. By bridging the gap between fundamental science and operational requirements, our system is finally capable of predicting solar wind conditions near Earth, especially the arrival times of the co-rotating interaction regions (CIRs) and CMEs. Our test against historical solar wind data from 2007 to 2016 shows that the hit rate (HR) of the high-speed enhancements (HSEs) is 0.60 and the false alarm rate (FAR) is 0.30. The mean error (ME) and the mean absolute error (MAE) of the maximum speed for the same period are −73.9 km s−1 and 101.2 km s−1, respectively. Meanwhile, the ME and MAE of the arrival time of the maximum speed are 0.15 days and 1.27 days, respectively. There are 25 CMEs simulated and the MAE of the arrival time is 18.0 h
    corecore