907 research outputs found

    Modeling Nonlinear Vector Time Series Data

    Get PDF
    In this chapter, we review nonlinear models for vector time series data and develop new nonparametric estimation and inference for them. Vector time series data exist widely in practice. In financial markets, multiple time series are usually correlated. When analyzing several interdependent time series, in general one should consider them as a single vector time series fitted by multivariate models, which provides a useful tool for modeling interdependencies among multiple time series and for simultaneously analyzing feedback and Granger causality effects. Since nonlinear features are widely observed in time series, we consider nonlinear methodology for modeling nonlinear vector time series data, which allows flexibility in the model structure and avoids the curse of dimensionality

    Environment-Aware Codebook for RIS-Assisted MU-MISO Communications: Implementation and Performance Analysis

    Full text link
    Reconfigurable intelligent surface (RIS) provides a new electromagnetic response control solution, which can reshape the characteristics of wireless channels. In this paper, we propose a novel environment-aware codebook protocol for RIS-assisted multi-user multiple-input single-output (MU-MISO) systems. Specifically, we first introduce a channel training protocol which consists of off-line and on-line stages. Secondly, we propose an environment-aware codebook generation scheme, which utilizes the statistical channel state information and alternating optimization method to generate codewords offline. Then, in the on-line stage, we use these pre-designed codewords to configure the RIS, and the optimal codeword resulting in the highest sum rate is adopted for assisting in the downlink data transmission. Thirdly, we analyze the theoretical performance of the proposed protocol considering the channel estimation errors. Finally, numerical simulations are provided to verify our theoretical analysis and the performance of the proposed scheme.Comment: 6 pages, 4 figures, accepted by VTC2024-Sprin

    GPT-NAS: Neural Architecture Search with the Generative Pre-Trained Model

    Full text link
    Neural Architecture Search (NAS) has emerged as one of the effective methods to design the optimal neural network architecture automatically. Although neural architectures have achieved human-level performances in several tasks, few of them are obtained from the NAS method. The main reason is the huge search space of neural architectures, making NAS algorithms inefficient. This work presents a novel architecture search algorithm, called GPT-NAS, that optimizes neural architectures by Generative Pre-Trained (GPT) model. In GPT-NAS, we assume that a generative model pre-trained on a large-scale corpus could learn the fundamental law of building neural architectures. Therefore, GPT-NAS leverages the generative pre-trained (GPT) model to propose reasonable architecture components given the basic one. Such an approach can largely reduce the search space by introducing prior knowledge in the search process. Extensive experimental results show that our GPT-NAS method significantly outperforms seven manually designed neural architectures and thirteen architectures provided by competing NAS methods. In addition, our ablation study indicates that the proposed algorithm improves the performance of finely tuned neural architectures by up to about 12% compared to those without GPT, further demonstrating its effectiveness in searching neural architectures

    Matten: Video Generation with Mamba-Attention

    Full text link
    In this paper, we introduce Matten, a cutting-edge latent diffusion model with Mamba-Attention architecture for video generation. With minimal computational cost, Matten employs spatial-temporal attention for local video content modeling and bidirectional Mamba for global video content modeling. Our comprehensive experimental evaluation demonstrates that Matten has competitive performance with the current Transformer-based and GAN-based models in benchmark performance, achieving superior FVD scores and efficiency. Additionally, we observe a direct positive correlation between the complexity of our designed model and the improvement in video quality, indicating the excellent scalability of Matten

    WaveDM: Wavelet-Based Diffusion Models for Image Restoration

    Full text link
    Latest diffusion-based methods for many image restoration tasks outperform traditional models, but they encounter the long-time inference problem. To tackle it, this paper proposes a Wavelet-Based Diffusion Model (WaveDM) with an Efficient Conditional Sampling (ECS) strategy. WaveDM learns the distribution of clean images in the wavelet domain conditioned on the wavelet spectrum of degraded images after wavelet transform, which is more time-saving in each step of sampling than modeling in the spatial domain. In addition, ECS follows the same procedure as the deterministic implicit sampling in the initial sampling period and then stops to predict clean images directly, which reduces the number of total sampling steps to around 5. Evaluations on four benchmark datasets including image raindrop removal, defocus deblurring, demoir\'eing, and denoising demonstrate that WaveDM achieves state-of-the-art performance with the efficiency that is comparable to traditional one-pass methods and over 100 times faster than existing image restoration methods using vanilla diffusion models
    corecore